[1]
A.-S. A. BAKR, H. I. AL-SHAFEY, E. I. ARAFA and A. M. A. EL NAGGAR, Synthesis and Characterization of Polymerized Acrylamide Coupled with Acrylamido-2-Methyl-1-Propane Sulfonic Acid-Montmorillonite Structure as a Novel Nanocomposite for Cd (II) Removal from Aqueous Solutions, Journal of Chemical & Engineering Data, 65 (2020), pp.4079-4091.
DOI: 10.1021/acs.jced.0c00385
Google Scholar
[2]
D. CASTEL, A. RICARD and R. AUDEBERT, Swelling of anionic and cationic starch-based superabsorbents in water and saline solution, Journal of Applied Polymer Science, 39 (1990), pp.11-29.
DOI: 10.1002/app.1990.070390102
Google Scholar
[3]
A. N. CHATTERJEE, Q. YU, J. S. MOORE and N. R. ALURU, Mathematical Modeling and Simulation of Dissolvable Hydrogels, Journal of Aerospace Engineering, 16 (2003), pp.55-64.
DOI: 10.1061/(asce)0893-1321(2003)16:2(55)
Google Scholar
[4]
J. CHEN, X. XU, M. LIU, Y. LI, D. YU, Y. LU, M. XIONG, I. WYMAN, X. XU and X. WU, Topological cyclodextrin nanoparticles as crosslinkers for self-healing tough hydrogels as strain sensors, Carbohydr Polym, 264 (2021), p.117978.
DOI: 10.1016/j.carbpol.2021.117978
Google Scholar
[5]
Q. CHEN, D. WEI, H. CHEN, L. ZHU, C. JIAO, G. LIU, L. HUANG, J. YANG, L. WANG and J. ZHENG, Simultaneous Enhancement of Stiffness and Toughness in Hybrid Double-Network Hydrogels via the First, Physically Linked Network, Macromolecules, 48 (2015), pp.8003-8010.
DOI: 10.1021/acs.macromol.5b01938
Google Scholar
[6]
S. DAS, P. MARTIN, G. VASILYEV, R. NANDI, N. AMDURSKY and E. ZUSSMAN, Processable, Ion-Conducting Hydrogel for Flexible Electronic Devices with Self-Healing Capability, Macromolecules, 53 (2020), pp.11130-11141.
DOI: 10.1021/acs.macromol.0c02060
Google Scholar
[7]
J. DU, S. XU, S. FENG, L. YU, J. WANG and Y. LIU, Tough dual nanocomposite hydrogels with inorganic hybrid crosslinking, Soft Matter, 12 (2016), pp.1649-54.
DOI: 10.1039/c5sm02790j
Google Scholar
[8]
A. GöPFERICH, Mechanisms of polymer degradation and erosion, Biomaterials, 17 (1996), pp.103-114.
DOI: 10.1016/0142-9612(96)85755-3
Google Scholar
[9]
S. C. A. G. L. GU¨RDAGˇ, Noncompetitive Removal of Heavy Metal Ions from Aqueous Solutions by Poly[2-(acrylamido)-2-methyl-1-propanesulfonic acid-co-itaconic acid] Hydrogel, Ind. Eng. Chem. Res, 48 (2009), p.2652–2658.
DOI: 10.1021/ie801449k
Google Scholar
[10]
K. HARAGUCHI and T. TAKEHISA, Nanocomposite Hydrogels: A Unique Organic–Inorganic Network Structure with Extraordinary Mechanical, Optical, and Swelling/Deswelling Properties, Adv. Mater., 14 (2002), pp.1120-1124.
DOI: 10.1002/1521-4095(20020816)14:16<1120::aid-adma1120>3.0.co;2-9
Google Scholar
[11]
K. HARAGUCHI, T. TAKEHISA and S. FAN, Effects of Clay Content on the Properties of Nanocomposite Hydrogels Composed of Poly(N-isopropylacrylamide) and Clay, Macromolecules, 35 (2002), pp.10162-10171.
DOI: 10.1021/ma021301r
Google Scholar
[12]
M. JASSAL, R. CHATTOPADHYAY and D. GANGULY, Synthesis and characterization of sodium acrylate and 2-acrylamido-2-methylpropane sulphonate (AMPS) copolymer gels, Fibers and Polymers, 5 (2004), pp.95-104.
DOI: 10.1007/bf02902921
Google Scholar
[13]
K. KABIRI, M. J. ZOHURIAAN-MEHR, H. MIRZADEH and M. KHEIRABADI, Solvent-, ion- and pH-specific swelling of poly(2-acrylamido-2-methylpropane sulfonic acid) superabsorbing gels, Journal of Polymer Research, 17 (2009), pp.203-212.
DOI: 10.1007/s10965-009-9306-7
Google Scholar
[14]
P. LAVRADOR, M. R. ESTEVES, V. M. GASPAR and J. F. MANO, Stimuli‐Responsive Nanocomposite Hydrogels for Biomedical Applications, Advanced Functional Materials, 31 (2020).
DOI: 10.1002/adfm.202005941
Google Scholar
[15]
W.-F. LEE and Y.-T. FU, Effect of montmorillonite on the swelling behavior and drug-release behavior of nanocomposite hydrogels, Journal of Applied Polymer Science, 89 (2003), pp.3652-3660.
DOI: 10.1002/app.12624
Google Scholar
[16]
A. LEGROURI, M. LAKRAIMI, A. BARROUG, A. DE ROY and J. P. BESSE, Removal of the herbicide 2,4-dichlorophenoxyacetate from water to zinc-aluminium-chloride layered double hydroxides, Water Res, 39 (2005), pp.3441-8.
DOI: 10.1016/j.watres.2005.03.036
Google Scholar
[17]
Q. LIN, H. LI, N. JI, L. DAI, L. XIONG and Q. SUN, Self-healing, stretchable, and freezing-resistant hydroxypropyl starch-based double-network hydrogels, Carbohydr Polym, 251 (2021), p.116982.
DOI: 10.1016/j.carbpol.2020.116982
Google Scholar
[18]
S. LIU, X. WANG, Y. PENG, Z. WANG and R. RAN, Highly Stretchable, Strain‐Sensitive, and Antifreezing Macromolecular Microsphere Composite Starch‐Based Hydrogel, Macromolecular Materials and Engineering, 306 (2021).
DOI: 10.1002/mame.202100198
Google Scholar
[19]
Y. LIU, M. ZHU, X. LIU, W. ZHANG, B. SUN, Y. CHEN and H.-J. P. ADLER, High clay content nanocomposite hydrogels with surprising mechanical strength and interesting deswelling kinetics, Polymer, 47 (2006), pp.1-5.
DOI: 10.1016/j.polymer.2005.11.030
Google Scholar
[20]
S. P. MARRA, K. T. RAMESH and A. S. DOUGLAS, Mechanical characterization of active poly(vinyl alcohol)–poly(acrylic acid) gel, Materials Science and Engineering: C, 14 (2001), pp.25-34.
DOI: 10.1016/s0928-4931(01)00205-3
Google Scholar
[21]
M. N. MOGHADAM and D. P. PIOLETTI, Improving hydrogels' toughness by increasing the dissipative properties of their network, J Mech Behav Biomed Mater, 41 (2015), pp.161-7.
Google Scholar
[22]
N. MUHD JULKAPLI, H. M. D. AKIL and Z. AHMAD, Preparation, Properties and Applications of Chitosan-Based Biocomposites/Blend Materials: A Review, Composite Interfaces, 18 (2012), pp.449-507.
DOI: 10.1163/156855411x610232
Google Scholar
[23]
T. NAKAJIMA, H. FURUKAWA, Y. TANAKA, T. KUROKAWA and J. P. GONG, Effect of void structure on the toughness of double network hydrogels, Journal of Polymer Science Part B: Polymer Physics, 49 (2011), pp.1246-1254.
DOI: 10.1002/polb.22293
Google Scholar
[24]
A. J. SCOTT, T. A. DUEVER and A. PENLIDIS, The role of pH, ionic strength and monomer concentration on the terpolymerization of 2-acrylamido-2-methylpropane sulfonic acid, acrylamide and acrylic acid, Polymer, 177 (2019), pp.214-230.
DOI: 10.1016/j.polymer.2019.06.006
Google Scholar
[25]
Z. TONG and X. LIU, Swelling Equilibria and Volume Phase Transition in Hydrogels with Strongly Dissociating Electrolytes, Macromolecules, 27 (2002), pp.844-848.
DOI: 10.1021/ma00081a033
Google Scholar
[26]
K. ULBRICH and J. KOPEČEK, Cross-linked copolymers of N,N-diethylacrylamide with improved mechanical properties, Journal of Polymer Science: Polymer Symposia, 66 (1979), pp.209-219.
DOI: 10.1002/polc.5070660122
Google Scholar
[27]
Q. WANG, J. L. MYNAR, M. YOSHIDA, E. LEE, M. LEE, K. OKURO, K. KINBARA and T. AIDA, High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder, Nature, 463 (2010), pp.339-43.
DOI: 10.1038/nature08693
Google Scholar
[28]
P.-L. Y. WEN-FU LEE, Superabsorbent Polymeric Materials. III. Effect of Initial Total Monomer Concentration on the Swelling Behavior of Crosslinked Poly(sodium acrylate) in Aqueous Salt Solution, Journal of Applied Polymer Science, 64 (1997), p.2371–2380.
DOI: 10.1002/(sici)1097-4628(19970620)64:12<2371::aid-app12>3.0.co;2-4
Google Scholar
[29]
Y. M. WU, Y. P. WANG, Y. Q. YU, J. XU and Q. F. CHEN, Dispersion polymerization of acrylamide with 2-acrylamido-2-methyl-1-propane sulfonate in aqueous solution, Journal of Applied Polymer Science, 102 (2006), pp.2379-2385.
DOI: 10.1002/app.24494
Google Scholar
[30]
H.-F. YU and S.-M. WANG, Effects of water content and pH on gel-derived TiO2-SiO2, Journal of Non-Crystalline Solids, 261 (2000), pp.260-267.
DOI: 10.1016/s0022-3093(99)00658-4
Google Scholar
[31]
X. ZHAO, Multi-scale multi-mechanism design of tough hydrogels: building dissipation into stretchy networks, Soft Matter, 10 (2014), pp.672-87.
DOI: 10.1039/c3sm52272e
Google Scholar
[32]
Y. ZHUANG, G. WANG, H. YANG, Z. ZHU, J. FU, W. SONG and H. ZHAO, Radiation polymerization and concentration separation of P(NIPA-co-AMPS) hydrogels, Polymer International, 54 (2005), pp.617-621.
DOI: 10.1002/pi.1625
Google Scholar