Preparation of All-Cellulose Composite Fiber Reinforced by Cellulose Nanofibrils Based on CO2 Switchable Solvent

Article Preview

Abstract:

In this paper, cellulose solution was obtained by dissolving cellulose in CO2 switchable solvent, and the CNF spinning solution was prepared by mixing cellulose solution with cellulose nanofibrils (CNF) by physical blending. CNF reinforced all-cellulose composite fibers were prepared by wet-spinning. The spinning solution with good dispersion of CNF can be obtained. The rheological property test showed that the solution has spinnability. The composite fibers were subsequently prepared by wet-spinning. The structure and properties of the composite fibers were analyzed by FT-IR, XRD, SEM, TGA, and mechanical properties testing. The results showed that the chemical structure of the composite fiber was the same as that of cellulose, but the aggregate structure became amorphous, which resulted in deceased thermal stability. The composite fibers had dense and solid structure without any cavity. The mechanical strength of the composite fiber was upto 1.12cN/dtex.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1061)

Pages:

9-17

Citation:

Online since:

May 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Klemm, D., Heublein, B., Fink, H. P., et al. Cellulose: Fascinating Biopolymer and Sustainable Raw Material [J]. Angew. Chemie - Int. Ed. 2005, 44 (22), 3358–3393.

DOI: 10.1002/anie.200460587

Google Scholar

[2] Fink H P, Weigel P, Purz H J, et al. Structure formation of regenerated cellulose materials from NMMO-solutions[J]. Progress in Polymer Science, 2001, 26(9):1473-1524.

DOI: 10.1016/s0079-6700(01)00025-9

Google Scholar

[3] Penfield M P, Axelson M L. The behaviour of cellulose in hydrated melts of the composition LiXċn H2O (X=I−, NO3−, CH3COO−, ClO4−) [J]. Cellulose, 1999, 6(3):213-219.

Google Scholar

[4] Thomas Heinze,René Dicke,Andreas Koschella,Arne Henning Kull,Erik‐Andreas Klohr,Wolfgang Koch. Effective preparation of cellulose derivatives in a new simple cellulose solvent[J]. Macromolecular Chemistry and Physics,2000,201(6):.

DOI: 10.1002/(sici)1521-3935(20000301)201:6<627::aid-macp627>3.0.co;2-y

Google Scholar

[5] Cai J, Zhang L. Rapid Dissolution of Cellulose in LiOH/Urea and NaOH/Urea Aqueous Solutions[J]. Macromolecular Bioscience,2005,5(6):.

DOI: 10.1002/mabi.200400222

Google Scholar

[6] Fischer S, Leipner H, K Thümmler, et al. Inorganic Molten Salts as Solvents for Cellulose[J]. Cellulose, 2003, 10(3):227-236.

DOI: 10.1023/a:1025128028462

Google Scholar

[7] Jessop, P. G., Heldebrant, et al. Reversible Nonpolar to Polar Solvent [J]. Nature 2005, 436 (August), 1102.

DOI: 10.1038/4361102a

Google Scholar

[8] Zhang, Q., Oztekin, N. S., et al. Activation of Microcrystalline Cellulose in a CO2-Based Switchable System [J]. ChemSusChem 2013, 6 (4), 593–596.

DOI: 10.1002/cssc.201200815

Google Scholar

[9] Xie, H., Yu, X., Yang, Y., et al. Capturing CO2 for Cellulose Dissolution [J]. Green Chem. 2014, 16 (5), 2422–2427.

Google Scholar

[10] Pei, M., Peng, X., et al. Synthesis of Water-Soluble, Fully Biobased Cellulose Levulinate Esters through the Reaction of Cellulose and Alpha-Angelica Lactone in a DBU/CO2/DMSO Solvent System [J]. Green Chem. 2020, 22 (3), 707–717.

DOI: 10.1039/c9gc03149a

Google Scholar

[11] Onwukamike, K. N., Grelier, S., et al. Critical Review on Sustainable Homogeneous Cellulose Modification: Why Renewability Is Not Enough [J]. ACS Sustain. Chem. Eng. 2019, 7 (2), 1826–1840.

DOI: 10.1021/acssuschemeng.8b04990

Google Scholar

[12] Onwukamike, K. N., Grelier, S., et al. Sustainable Transesterification of Cellulose with High Oleic Sunflower Oil in a DBU-CO2 Switchable Solvent [J]. ACS Sustain. Chem. Eng. 2018, 6 (7), 8826–8835.

DOI: 10.1021/acssuschemeng.8b01186

Google Scholar

[13] Onwukamike, K. N., Tassaing, et al. Detailed Understanding of the DBU/CO2 Switchable Solvent System for Cellulose Solubilization and Derivatization. ACS Sustain [J]. Chem. Eng. 2018, 6 (1), 1496–1503.

DOI: 10.1021/acssuschemeng.7b04053

Google Scholar

[14] Guo, Y., Li, L., Guo, G., et al. Synthesis of a Fully Biobased Cellulose-3-(2-Hydroxyphenyl) Propionate Ester with Antioxidant Activity and UV-Resistant Properties by the DBU/CO2/DMSO Solvent System [J]. Green Chem. 2021, 23 (6), 2352–2361.

DOI: 10.1039/d0gc03478a

Google Scholar

[15] Jin, L., Gan, J., Hu, G., et al. Preparation of Cellulose Films from Sustainable CO2/DBU/DMSO System [J]. Polymers (Basel). 2019, 11 (6), 994.

DOI: 10.3390/polym11060994

Google Scholar

[16] Pan, B., Huang, J., Chen, L. et al. Preparation of Corn Cellulose Films with Controllable Mechanical Property by UsingSwitchable CO2/DBU/DMSO System [J]. J. Polym. Mater. 2020, 37 (1), 17–27.

Google Scholar

[17] Onwukamike, K. N., Lapuyade, L., et al. Sustainable Approach for Cellulose Aerogel Preparation from the DBU-CO2 Switchable Solvent [J]. ACS Sustain. Chem. Eng. 2019, 7 (3), 3329–3338.

DOI: 10.1021/acssuschemeng.8b05427

Google Scholar

[18] Nanta, P., Skolpap, W., Kasemwong, K., et al. Dissolution and Modification of Cellulose Using High-Pressure Carbon Dioxide Switchable Solution [J]. J. Supercrit. Fluids 2017, 130 (March), 84–90.

DOI: 10.1016/j.supflu.2017.07.019

Google Scholar

[19] Kirchberg, A., Meier, M. A. R. Regeneration of Cellulose from a Switchable Ionic Liquid: Toward More Sustainable Cellulose Fibers [J]. Macromol. Chem. Phys. 2021, 2000433.

DOI: 10.1002/macp.202000433

Google Scholar

[20] Junchen, H., Fei, L., Haining, N., et al. A method and system for dissolving cellulose[P]. CN201910548376.9, 2019(in Chinese).

Google Scholar

[21] Li, J., Lu, et al. Structure and Properties of Regenerated Cellulose Fibers Based on Dissolution of Cellulose in a CO2 Switchable Solvent. ACS Sustain [J]. Chem. Eng. 2021, 9 (13), 4744–4754.

DOI: 10.1021/acssuschemeng.0c08907

Google Scholar

[22] Abitbol, T., Rivkin, A., Cao, Y., et al. Nanocellulose, a Tiny Fiber with Huge Applications [J]. Curr. Opin. Biotechnol. 2016, 39 (I), 76–88.

DOI: 10.1016/j.copbio.2016.01.002

Google Scholar

[23] Klemm, D., Kramer, F., Moritz, S., et al. Nanocelluloses: A New Family of Nature-Based Materials [J]. Angew. Chemie - Int. Ed. 2011, 50 (24), 5438–5466.

DOI: 10.1002/anie.201001273

Google Scholar

[24] Prakobna, K., Galland, S., Berglund, L. A. High-Performance and Moisture-Stable Cellulose-Starch Nanocomposites Based on Bioinspired Core-Shell Nanofibers [J]. Biomacromolecules 2015, 16 (3), 904–912.

DOI: 10.1021/bm5018194

Google Scholar

[25] Liu, Y. Strong and Flexible Nanocomposites of Carboxylated Cellulose Nanofibril Dispersed by Industrial Lignin. ACS Sustain [J]. Chem. Eng. 2018, 6 (4), 5524–5532.

DOI: 10.1021/acssuschemeng.8b00402

Google Scholar

[26] Qiu, C., Zhu, K., et al. Super Strong All-Cellulose Composite Filaments by Combination of Inducing Nanofiber Formation and Adding Nanofibrillated Cellulose [J]. Biomacromolecules 2018, 19 (11), 4386–4395.

DOI: 10.1021/acs.biomac.8b01262

Google Scholar