Study on the Properties of Chemical Foaming Injection Molded Polyolefin/Chitosan Composites

Article Preview

Abstract:

Chitosan is a biodegradable material with good biocompatibility. It can be used in medicine, foodstuff, the chemical industry and heavy metal adsorption. In this study, an exothermic foaming agent (Azodicarbonamide) injection molded was added to polypropylene (PP), maleic anhydride (MA) grafted PP (PPgMA) and Chitosan composites. MA served as a compatibilizer due to the poor bonding between PP and chitosan. This study investigated the effects of the modifier and chitosan loading on the tensile strength, thermal properties and morphology in chemical foam injection-molded PP and PPgMA composites. The results showed that the tensile strength decreased with the addition of chitosan, but Young’s modulus increased with the added chitosan loading. The enhancement was significant for foam injection molding. The cell size decreased and the cell density increased with the addition of chitosan for the PP/PPgMA composites. The thermogravimetric analysis (TGA) results showed that the thermal degradation could be decreased with the addition of chitosan in both the PP and PPgMA composites. The use of foamed chitosan composites will be further investigated in the removal of heavy metal in waste water.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1064)

Pages:

21-26

Citation:

Online since:

June 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H.Ku, H.Wang, N.Pattarachaiyakoop, M.Trada, A review on the tensile properties of natural fiber reinforced polymer composites, Composites Part B: Engineering, 42 (2011) 2 856-873.

DOI: 10.1016/j.compositesb.2011.01.010

Google Scholar

[2] M. Vahtrus, S. Orasa, M. Antsova, V. Reedoa, U. Mäeorgb, A. Lõhmusa, K. Saala, R. Lõhmusa, Mechanical and thermal properties of epoxy composite thermal insulators, Proceedings of the Estonian Academy of Sciences, 66 (2017) 339–346.

DOI: 10.3176/proc.2017.4.03

Google Scholar

[3] M. Asim, M. T. Paridah, M. Chandrasekar, R. M. Shahroze, M. Jawaid, M. Nasir, R. Siakeng, Thermal stability of natural fibers and their polymer composites, Iranian Polymer Journal, 29 (2019) 625-648.

DOI: 10.1007/s13726-020-00824-6

Google Scholar

[4] G.F. Wang, C.H. Ding, Na Liu, H.Y. Liu, J.L. Yang, S.J. Ma, C.L. He, H. Y. Zhao, Complexant-montmorillonite nanocomposites for heavy metal binding in sulfide tailing, Journal of Materials Research and Technology, (2022).

DOI: 10.1016/j.jmrt.2022.01.019

Google Scholar

[5] M. H. Naveen, N. G. Gurudatt, Y. B. Shim, Applications of conducting polymer composites to electro chemical sensors: A review, Applied Materials Today, 9 (2017) 419-433.

DOI: 10.1016/j.apmt.2017.09.001

Google Scholar

[6] Colton, J. S.; Suh, Nam P.; Polym. Eng. and Sci. 27 (1987) 500.

Google Scholar

[7] M. Zhang, X. H. Li, Y. D. Gong, N. M. Zhao, X. F. Zhang, Properties and biocompatibility of chitosan films modified by blending with PEG, Biomaterials, 23, (2002) 13, 2641-2648.

DOI: 10.1016/s0142-9612(01)00403-3

Google Scholar

[8] H.D. She, X. F. Xiao, R. F. Liu, Preparation and characterization of polycaprolactone-chitosan composites for tissue engineering applications, J. of Materials Science, 42 (2007) 8113-8119.

DOI: 10.1007/s10853-007-1706-7

Google Scholar

[9] H.C. Lee, Y.G. Jeong, B. G. Min, W. S. Lyoo, S . C. Lee, Preparation and acid dye adsorption behavior of polyurethane/chitosan composite foams, Fibers and Polymers, 10 (2009), 636-642.

DOI: 10.1007/s12221-010-0636-1

Google Scholar

[10] H.M. Nie, L.Y. Lee, H. Tong, C. H. Wang, PLGA/chitosan composites from a combination of spray drying and supercritical fluid foaming techniques: New carriers for DNA delivery, Journal.

DOI: 10.1016/j.jconrel.2008.04.018

Google Scholar

[11] A. Cho, K., Li, F., Choi, Crystallization and melting behavior of polypropylene and maleated polypropylene blends, J. of Polymer, 40 (1999) 1719-1729.

DOI: 10.1016/s0032-3861(98)00404-2

Google Scholar

[12] J. Hou, G. Zhao, L. Zhang, G. Dong, G. Wang., Foaming Mechanism of Polypropylene in Gas-Assisted Microcellular Injection Molding, Ind Eng Chem Res, 57 (2018) 4710–20.

DOI: 10.1021/acs.iecr.7b05389

Google Scholar

[13] S.N. Leung, A. Wong, L.C. Wang, C.B. Park, Mechanism of extensional stress-induced cell formation in polymeric foaming processes with the presence of nucleating agents, J. Supercrit Fluids, 63 (2012) 187–98.

DOI: 10.1016/j.supflu.2011.12.018

Google Scholar