Tensile Strength and Morphological Behavior of Treated Oil Pam Empty Fruit Bunch Particle Reinforced Polymeric Composite

Article Preview

Abstract:

Numerous literatures have suggested that the use of natural fiber as filler can improve the mechanical properties of a polymer composite. Oil palm empty fruit bunch fibers (OPEFB) are no exception and have shown to exhibit good mechanical properties, with the potential to produce environmentally friendlier composites. In this study, the tensile strengths and morphologies of micro OPEFB filled composites with varying loadings (0.3125 wt% to 10 wt%) were investigated. It was found that increasing content of OPEFB reduces the translucency of the composite almost linearly. It was also revealed that the addition of 0.3125 wt% to 2.5 wt% has a reinforcing effect, observing improvement up to 17.4% compared to its neat condition. Such findings would facilitate the development of an effective OPEFB reinforced polymeric nanocomposite.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1064)

Pages:

27-37

Citation:

Online since:

June 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Kumar, A. Manna, and R. Dang, A review on applications of natural Fiber-Reinforced composites (NFRCs),, Materials Today: Proceedings, (2021).

DOI: 10.1016/j.matpr.2021.09.131

Google Scholar

[2] N. Kumari, M. Paswan, and K. Prasad, Effect of sawdust addition on the mechanical and water absorption properties of banana-sisal/epoxy natural fiber composites,, Materials Today: Proceedings, vol. 49, pp.1719-1722, (2022).

DOI: 10.1016/j.matpr.2021.07.489

Google Scholar

[3] S. C. Das, D. Paul, S. A. Grammatikos, M. A. B. Siddiquee, S. Papatzani, P. Koralli, J. M. M. Islam, M. A. Khan, S. M. Shauddin, R. A. Khan, N. Vidakis, and M. Petousis, Effect of stacking sequence on the performance of hybrid natural/synthetic fiber reinforced polymer composite laminates,, Composite Structures, vol. 276, p.114525, (2021).

DOI: 10.1016/j.compstruct.2021.114525

Google Scholar

[4] D. Mohana Krishnudu, D. Sreeramulu, and P. Venkateshwar Reddy, A study of filler content influence on dynamic mechanical and thermal characteristics of coir and luffa cylindrica reinforced hybrid composites,, Construction and Building Materials, vol. 251, p.119040, (2020).

DOI: 10.1016/j.conbuildmat.2020.119040

Google Scholar

[5] A. Sharma, M. Thakur, M. Bhattacharya, T. Mandal, and S. Goswami, Commercial application of cellulose nano-composites – A review,, Biotechnology Reports, vol. 21, pp. e00316, (2019).

DOI: 10.1016/j.btre.2019.e00316

Google Scholar

[6] R. Vijay, A. Vinod, D. Lenin Singaravelu, M. R. Sanjay, and S. Siengchin, Characterization of chemical treated and untreated natural fibers from Pennisetum orientale grass- A potential reinforcement for lightweight polymeric applications,, International Journal of Lightweight Materials and Manufacture, vol. 4, no. 1, pp.43-49, (2021).

DOI: 10.1016/j.ijlmm.2020.06.008

Google Scholar

[7] G. Chethan Kumar, S. M. Baligidad, A. C. Maharudresh, N. Dayanand, and T. N. Chetan, Development and investigation of the mechanical properties of natural fiber reinforced polymer composite,, Materials Today: Proceedings, (2021).

DOI: 10.1016/j.matpr.2021.09.128

Google Scholar

[8] M. R. Mansor, A. H. Nurfaizey, N. Tamaldin, and M. N. A. Nordin, Natural fiber polymer composites: Utilization in aerospace engineering,, Biomass, Biopolymer-Based Materials, and Bioenergy, D. Verma, E. Fortunati, S. Jain and X. Zhang, eds., pp.203-224: Woodhead Publishing, (2019).

DOI: 10.1016/b978-0-08-102426-3.00011-4

Google Scholar

[9] V. K. Thakur, and M. K. Thakur, Processing and characterization of natural cellulose fibers/thermoset polymer composites,, Carbohydrate Polymers, vol. 109, pp.102-117, (2014).

DOI: 10.1016/j.carbpol.2014.03.039

Google Scholar

[10] L. C. Hao, S. M. Sapuan, M. R. Hassan, and R. M. Sheltami, Natural fiber reinforced vinyl polymer composites,, Natural Fibre Reinforced Vinyl Ester and Vinyl Polymer Composites, S. M. Sapuan, H. Ismail and E. S. Zainudin, eds., pp.27-70: Woodhead Publishing, (2018).

DOI: 10.1016/b978-0-08-102160-6.00002-0

Google Scholar

[11] N. S. Binti Mohd Hafidz, M. S. Bin Mohamed Rehan, and H. Binti Mokhtar, Effect of alkaline treatment on water absorption and thickness swelling of natural fibre reinforced unsaturated polyester composites,, Materials Today: Proceedings, vol. 48, pp.720-727, (2022).

DOI: 10.1016/j.matpr.2021.02.209

Google Scholar

[12] X. Zhao, K. Copenhaver, L. Wang, M. Korey, D. J. Gardner, K. Li, M. E. Lamm, V. Kishore, S. Bhagia, M. Tajvidi, H. Tekinalp, O. Oyedeji, S. Wasti, E. Webb, A. J. Ragauskas, H. Zhu, W. H. Peter, and S. Ozcan, Recycling of natural fiber composites: Challenges and opportunities,, Resources, Conservation and Recycling, vol. 177, p.105962, (2022).

DOI: 10.1016/j.resconrec.2021.105962

Google Scholar

[13] E. Sarikaya, H. Çallioğlu, and H. Demirel, Production of epoxy composites reinforced by different natural fibers and their mechanical properties,, Composites Part B: Engineering, vol. 167, pp.461-466, (2019).

DOI: 10.1016/j.compositesb.2019.03.020

Google Scholar

[14] T. S. Cheng, D. N. Uy Lan, S. Phillips, and L. Q. N. Tran, Characteristics of oil palm empty fruit bunch fiber and mechanical properties of its unidirectional composites,, Polymer Composites, vol. 40, no. 3, pp.1158-1164, (2019).

DOI: 10.1002/pc.24824

Google Scholar

[15] B. D. Richard, A. Wahi, R. Nani, E. Iling, S. Osman, and D. S. H. Ali, Effect of Fiber Loading on Mechanical Properties of Oil Palm Frond/Urea Formaldehyde (OPF/UF) Composite,, International Journal of Integrated Engineering, vol. 11, no. 7, (2019).

DOI: 10.30880/ijie.2019.11.07.016

Google Scholar

[16] A. F. Ahmad, Z. Abbas, S. J. Obaiys, and M. F. Zainuddin, Effect of untreated fiber loading on the thermal, mechanical, dielectric, and microwave absorption properties of polycaprolactone reinforced with oil palm empty fruit bunch biocomposites,, Polymer Composites, vol. 39, no. S3, pp. E1778-E1787, (2018).

DOI: 10.1002/pc.24792

Google Scholar

[17] M. K. B. Bakri, E. Jayamani, S. K. Heng, and S. Hamdan, Reinforced Oil Palm Fiber Epoxy Composites: An Investigation on Chemical Treatment of Fibers on Acoustical, Morphological, Mechanical and Spectral Properties,, Materials Today: Proceedings, vol. 2, no. 4, pp.2747-2756, (2015).

DOI: 10.1016/j.matpr.2015.07.266

Google Scholar

[18] N. A. Ramlee, M. Jawaid, E. S. Zainudin, and S. A. K. Yamani, Tensile, physical and morphological properties of oil palm empty fruit bunch/sugarcane bagasse fibre reinforced phenolic hybrid composites,, Journal of Materials Research and Technology, vol. 8, no. 4, pp.3466-3474, (2019).

DOI: 10.1016/j.jmrt.2019.06.016

Google Scholar

[19] S. A. Adnan, A. N. Ranjamdin, A. F. Osman, I. Ibrahim, L. D. Sheng, N. H. A. Zaidi, and M. H. Leman, Mechanical properties of thermoplastic starch/oil palm empty fruit bunch biocomposite film,, in Proceedings of Green Design and Manufacture 2020, (2021).

DOI: 10.1063/5.0044668

Google Scholar

[20] N. Saba, P. M. Tahir, K. Abdan, and N. A. Ibrahim, Fabrication of Epoxy Nanocomposites from Oil Palm Nano Filler: Mechanical and Morphological Properties,, 2016, vol. 11, no. 3, p.16, (2016).

DOI: 10.15376/biores.11.3.7721-7736

Google Scholar

[21] W. Chaiwong, N. Samoh, T. Eksomtramage, and K. Kaewtatip, Surface-treated oil palm empty fruit bunch fiber improved tensile strength and water resistance of wheat gluten-based bioplastic,, Composites Part B: Engineering, vol. 176, p.107331, (2019).

DOI: 10.1016/j.compositesb.2019.107331

Google Scholar

[22] D. Wong, M. Anwar, S. Debnath, A. H. Abdullah, S. Izman, and A. Pramanik, Degassing Process Influence on Tensile Strength of Neat E132 Epoxy Polymeric Materials,, Materials Science Forum, vol. 1026, pp.129-135, (2021).

DOI: 10.4028/www.scientific.net/msf.1026.129

Google Scholar

[23] A. H. S. Nur Athirah Mohamad Radzi, and S. S. Jamari, Structural Studies of Surface Modifeid Oil Palm Empty Fruit Bunch with Alkaline Pre- Treatment as Potential Filler for the Green Composite,, Jurnal Tribologi, vol. 26, pp.75-83, (2020).

Google Scholar

[24] S. Daneshfozoun, M. A. Abdullah, and B. Abdullah, Preparation and characterization of magnetic biosorbent based on oil palm empty fruit bunch fibers, cellulose and Ceiba pentandra for heavy metal ions removal,, Industrial Crops and Products, vol. 105, pp.93-103, (2017).

DOI: 10.1016/j.indcrop.2017.05.011

Google Scholar

[25] T. A. Negawo, Y. Polat, F. N. Buyuknalcaci, A. Kilic, N. Saba, and M. Jawaid, Mechanical, morphological, structural and dynamic mechanical properties of alkali treated Ensete stem fibers reinforced unsaturated polyester composites,, Composite Structures, vol. 207, pp.589-597, (2019).

DOI: 10.1016/j.compstruct.2018.09.043

Google Scholar

[26] S. Palamae, P. Dechatiwongse, W. Choorit, Y. Chisti, and P. Prasertsan, Cellulose and hemicellulose recovery from oil palm empty fruit bunch (EFB) fibers and production of sugars from the fibers,, Carbohydrate Polymers, vol. 155, pp.491-497, (2017).

DOI: 10.1016/j.carbpol.2016.09.004

Google Scholar

[27] M. K. Faizi, A. B. Shahriman, M. S. Abdul Majid, Z. A. Ahmad, B. M. T. Shamsul, and Y. G. Ng, The effect of alkaline treatments soaking time on oil palm empty fruit bunch (OPEFB) fibre structure,, Journal of Physics: Conference Series, vol. 908, p.012033, (2017).

DOI: 10.1088/1742-6596/908/1/012033

Google Scholar

[28] M. Rokbi, H. Osmani, A. Imad, and N. Benseddiq, Effect of Chemical treatment on Flexure Properties of Natural Fiber-reinforced Polyester Composite,, Procedia Engineering, vol. 10, pp.2092-2097, (2011).

DOI: 10.1016/j.proeng.2011.04.346

Google Scholar

[29] D.-H. Kim, and S.-H. Park, Evaluation of Resin Composite Translucency by Two Different Methods,, Operative Dentistry, vol. 38, no. 3, pp. E76-E90, (2013).

DOI: 10.2341/12-085-l

Google Scholar

[30] Y.-K. Lee, Influence of filler on the difference between the transmitted and reflected colors of experimental resin composites,, Dental Materials, vol. 24, no. 9, pp.1243-1247, (2008).

DOI: 10.1016/j.dental.2008.01.014

Google Scholar

[31] W. J. Cantwell, and H. H. Kausch, Fracture behaviour of epoxy resins,, Chemistry and Technology of Epoxy Resins, B. Ellis, ed., pp.144-174, Dordrecht: Springer Netherlands, (1993).

DOI: 10.1007/978-94-011-2932-9_5

Google Scholar

[32] M. D. Hayes, D. B. Edwards, and A. R. Shah, Fractography Basics,, Fractography in Failure Analysis of Polymers, M. D. Hayes, D. B. Edwards and A. R. Shah, eds., pp.48-92, Oxford: William Andrew Publishing, (2015).

DOI: 10.1016/b978-0-323-24272-1.00004-0

Google Scholar

[33] J. Berry, The morphology of polymer fracture surfaces,, Journal of Polymer Science Part C: Polymer Symposia, vol. 3, no. 1, pp.91-101, (1963).

DOI: 10.1002/polc.5070030110

Google Scholar

[34] J.-B. Kopp, and J. Girardot, Dynamic fracture in a semicrystalline biobased polymer: an analysis of the fracture surface,, International Journal of Fracture, vol. 226, no. 1, pp.121-132, (2020).

DOI: 10.1007/s10704-020-00482-y

Google Scholar

[35] S. Mahalingam, V. Gopalan, H. Velivela, V. Pragasam, Prashanth, and V. Suthenthiraveerappa, Studies on Shear Strength of CNT/Coir Fibre/Fly Ash Reinforced Epoxy Polymer Composites,, Emerging Materials Research, vol. 9, no. 1, pp.1-14, (2020).

DOI: 10.1680/jemmr.19.00098

Google Scholar

[36] M. Ragoubi, D. Bienaimé, S. Molina, B. George, and A. Merlin, Impact of corona treated hemp fibres onto mechanical properties of polypropylene composites made thereof,, Industrial Crops and Products, vol. 31, no. 2, pp.344-349, (2010).

DOI: 10.1016/j.indcrop.2009.12.004

Google Scholar