Effect of Concentration of Electrolyte Solution on the Electrochemical Stability of Ionogel

Article Preview

Abstract:

Ionogel is an emerging hybrid material where the ionic liquid is immobilized within polymer matrix. Interesting combination of properties has permitted wide applications of ionogel. In this study, a well-known method, sol-gel is used to synthesize ionogel. However, it is intended to identify the optimum concentration of ionic liquid within ionogel which endows the ionogel with the best electrochemical performance. By varying the concentration of ionic liquid, the appearance of ionogel is compared. FTIR is performed to understand the structural changes that occur in ionogel. Linear Sweep Voltammetry is performed to study the electrochemical stability of ionogel.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1064)

Pages:

65-70

Citation:

Online since:

June 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Bideau, J., L. Viau, and A. Vioux, Ionogels, Ionic Liquid Based Hybrid Materials. Chemical Society reviews, 2011. 40: pp.907-25.

DOI: 10.1039/c0cs00059k

Google Scholar

[2] Andrzejewska, E., A. Marcinkowska, and A. Zgrzeba, Ionogels – materials containing immobilized ionic liquids. Polimery -Warsaw-, 2017. 62: pp.344-352.

DOI: 10.14314/polimery.2017.344

Google Scholar

[3] Adam J. Greer , J.J.a.C.H., Industrial Applications of Ionic Liquids. molecules, 2020. 25(5207): pp.1-31.

Google Scholar

[4] Javed, F., et al., An approach to classification and hi-tech applications of room-temperature ionic liquids (RTILs): A review. Journal of Molecular Liquids, 2018. 271: pp.403-420.

DOI: 10.1016/j.molliq.2018.09.005

Google Scholar

[5] Zawada Donato, K., et al., Recent Applications of Ionic Liquids in the Sol-Gel Process for Polymer–Silica Nanocomposites with Ionic Interfaces. Colloids and Interfaces, 2017. 1: p.5.

DOI: 10.3390/colloids1010005

Google Scholar

[6] Singh, M.P., R.K. Singh, and S. Chandra, Ionic liquids confined in porous matrices: Physicochemical properties and applications. Progress in Materials Science, 2014. 64: pp.73-120.

DOI: 10.1016/j.pmatsci.2014.03.001

Google Scholar

[7] Khodagholy, D., et al., Organic electrochemical transistor incorporating an ionogel as a solid state electrolyte for lactate sensing. Journal of Materials Chemistry, 2012. 22(10): pp.4440-4443.

DOI: 10.1039/c2jm15716k

Google Scholar

[8] Sun, J., et al., A transparent, stretchable, stable, self-adhesive ionogel-based strain sensor for human motion monitoring. Journal of Materials Chemistry C, 2019. 7(36): pp.11244-11250.

DOI: 10.1039/c9tc03797g

Google Scholar

[9] Li, T., et al., Mechanically Robust, Elastic, and Healable Ionogels for Highly Sensitive Ultra-Durable Ionic Skins. Advanced Materials, 2020. 32(32): p.2002706.

DOI: 10.1002/adma.202002706

Google Scholar

[10] Lai, J., et al., Highly Stretchable, Fatigue-Resistant, Electrically Conductive, and Temperature-Tolerant Ionogels for High-Performance Flexible Sensors. ACS Applied Materials & Interfaces, 2019. 11(29): pp.26412-26420.

DOI: 10.1021/acsami.9b10146

Google Scholar

[11] Khurana, S. and A. Chandra, Ion conducting polymer-silica hybrid ionogels obtained via non-aqueous sol-gel route. Solid State Ionics, 2019. 340: p.115027.

DOI: 10.1016/j.ssi.2019.115027

Google Scholar

[12] Sert Çok, S., et al., Revealing the pore characteristics and physicochemical properties of silica ionogels based on different sol-gel drying strategies. Journal of Solid State Chemistry, 2019. 278: p.120877.

DOI: 10.1016/j.jssc.2019.07.038

Google Scholar

[13] Tripathi, A.K., Ionic liquid–based solid electrolytes (ionogels) for application in rechargeable lithium battery. Materials Today Energy, 2021. 20: p.100643.

DOI: 10.1016/j.mtener.2021.100643

Google Scholar

[14] Thapaliya, B.P., I. Popov, and S. Dai, Layer-by-Layer Assembly Strategy for Reinforcing the Mechanical Strength of an Ionogel Electrolyte without Affecting Ionic Conductivity. ACS Applied Energy Materials, 2020. 3(2): pp.1265-1270.

DOI: 10.1021/acsaem.9b01932

Google Scholar

[15] Gupta, A.K., et al., Low density ionogels obtained by rapid gellification of tetraethyl orthosilane assisted by ionic liquids. Dalton Transactions, 2012. 41(20): pp.6263-6271.

DOI: 10.1039/c2dt30318c

Google Scholar

[16] Tafur, J.P. and A.J. Fernández Romero, Electrical and spectroscopic characterization of PVdF-HFP and TFSI—ionic liquids-based gel polymer electrolyte membranes. Influence of ZnTf2 salt. Journal of Membrane Science, 2014. 469: pp.499-506.

DOI: 10.1016/j.memsci.2014.07.007

Google Scholar

[17] Noor, N.A.M. and M.I.N. Isa, Investigation on transport and thermal studies of solid polymer electrolyte based on carboxymethyl cellulose doped ammonium thiocyanate for potential application in electrochemical devices. International Journal of Hydrogen Energy, 2019. 44(16): pp.8298-8306.

DOI: 10.1016/j.ijhydene.2019.02.062

Google Scholar

[18] Dhatarwal, P., S. Choudhary, and R.J. Sengwa, Electrochemical performance of Li+-ion conducting solid polymer electrolytes based on PEO–PMMA blend matrix incorporated with various inorganic nanoparticles for the lithium ion batteries. Composites Communications, 2018. 10: pp.11-17.

DOI: 10.1016/j.coco.2018.05.004

Google Scholar

[19] Aziz, S.B., et al., A Promising Polymer Blend Electrolytes Based on Chitosan: Methyl Cellulose for EDLC Application with High Specific Capacitance and Energy Density. Molecules, 2019. 24(13).

DOI: 10.3390/molecules24132503

Google Scholar