Mechanical Characterization and Numerical Optimization of Aluminum Matrix Hybrid Composite

Article Preview

Abstract:

Hybridization of aluminium matrix composite is with a view to offset the properties deficient in one composite reinforcement. The present investigation involves a comparative study of AA6063 matrix composites with single reinforcement of Al2O3, SiC, graphene respectively and various hybridized proportions of the same reinforcements. Physical (density and %porosity) and mechanical (tensile strength, fracture toughness, %elongation, elastic modulus, etc.) properties of composites developed via solidification processing technique were evaluated. The porosity of all the composites falls below the maximum acceptable limit for cast metal matrix composite. Maximum values for UTS, %elongation and absorbed energy at maximum stress was obtained by hybrid composite with 4wt% Al2O3, SiC and 2wt% graphene, while the composite with the highest single reinforcement of graphene have the highest value for elastic modulus and fracture toughness. Numerical optimization results show that a matrix and hybrid reinforcements contents of AA6063 (91.413wt.%), SiC (3.679wt.%), Al2O3 (0.277wt.%), and graphene (4.632wt.%) respectively, will result in optimal values for the evaluated properties.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1065)

Pages:

47-57

Citation:

Online since:

June 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.A. Adediran, K.K. Alaneme, I.O. Oladele, Microstructural characteristics and mechanical behaviour of aluminium matrix composites reinforced with Si-based refractory compounds derived from rice husk, Cogent Eng. 8 (2021) 1897928. https://doi.org/10.1080/23311916. 2021.1897928.

DOI: 10.1080/23311916.2021.1897928

Google Scholar

[2] S. Kumae, D. Arun, Mechanical Properties of Aluminum 6063 Alloy based Graphite Particles Mechanical Properties of Aluminum 6063 Alloy based Graphite Particles Reinforced Metal Matrix Composite, (2017) 1–6.

Google Scholar

[3] M.D. Sameer, A.K. Birru, Experimental Investigations on Mechanical behavior of Al2O3 and Graphite Reinforced Aluminium Hybrid Metal Composites by Stir Casting Process, Int. J. Sci. Eng. Res. 7 (2016) 37–42.

Google Scholar

[4] K.K. Alaneme, O.K. Sanusi, Microstructural characteristics , mechanical and wear behaviour of aluminium matrix hybrid composites reinforced with alumina , rice husk ash and graphite, Eng. Sci. Technol. an Int. J. 18 (2015) 416–422. https://doi.org/10.1016/j.jestch.2015.02.003.

DOI: 10.1016/j.jestch.2015.02.003

Google Scholar

[5] C.O. Ujah, materials Enhanced tribology , thermal and electrical properties of Al-CNT composite processed via spark plasma sintering for transmission conductor, J. Mater. Sci. (2019). https://doi.org/10.1007/s10853-019-03894-x.

DOI: 10.1007/s10853-019-03894-x

Google Scholar

[6] S.T. Selvamani, S. Premkumar, M. Vigneshwar, P. Hariprasath, K. Palanikumar, Influence of carbon nano tubes on mechanical, metallurgical and tribological behavior of magnesium nanocomposites, J. Magnes. Alloy. 5 (2017) 326–335. https://doi.org/10.1016/j.jma. 2017.08.006.

DOI: 10.1016/j.jma.2017.08.006

Google Scholar

[7] M.K. Yadav, B. Saini, A. Yadav, Experimental Analysis Of Mechanical Properties Of Al6063 And SIC Composite, Int. J. Mech. Ind. Technol. 3 (2015) 221–227.

Google Scholar

[8] E.G. Okonkwo, V.S. Aigbodion, P.O. Offor, K.C. Nnakwo, Silica sand modified aluminium composite : an empirical study of the physical , mechanical and morphological properties, Mater. Res. Express. 6 (2019) 076539. https://doi.org/10.1088/2053-1591/ab14c6.

DOI: 10.1088/2053-1591/ab14c6

Google Scholar

[9] K.K. Alaneme, M.H. Adegun, A.G. Archibong, E.A. Okotete, Mechanical and wear behaviour of aluminium hybrid composites reinforced with varied aggregates of alumina and quarry dust, J. Chem. Technol. Metall. 54 (2019) 1361–1370.

Google Scholar

[10] K.K. Alaneme, B.U. Odoni, Mechanical properties , wear and corrosion behavior of copper matrix composites reinforced with steel machining chips, Eng. Sci. Technol. an Int. J. 19 (2016) 1593–1599. https://doi.org/10.1016/j.jestch.2016.04.006.

DOI: 10.1016/j.jestch.2016.04.006

Google Scholar

[11] R. Umunakwe, D.J. Olaleye, A. Oyetunji, O.C. Okoye, I.J. Umunakwe, Assessment of Some Mechanical Properties and Microstructure of Particulate Periwinkle Shell-Aluminium 6063 Metal Matrix Composite ( PPS-ALMMC) Produced by Two-Step Casting., Niger. J. Technol. 36 (2017) 421–427. https://doi.org/http://dx.doi.org/10.4314/njt.v36i2.14.

DOI: 10.4314/njt.v36i2.14

Google Scholar

[12] F.O. Edoziuno, C.C. Nwaeju, A.A. Adediran, B.U. Odoni, V.R. Arun, Mechanical and microstructural characteristics of Aluminium 6063 Alloy / Palm Kernel shell composites for lightweight applications, Sci. African. 12 (2021) e00781. https://doi.org/10.1016/j.sciaf.2021.e00781.

DOI: 10.1016/j.sciaf.2021.e00781

Google Scholar

[13] F.O. Edoziuno, B.U. Odoni, F.I. Alo, C.C. Nwaeju, Dry Sliding Wear and Surface Morphological Examination of an Aluminium Matrix Composite Reinforced with Palm Kernel Shell, Acta Metall. Slovaca. 26 (2020) 54–62. https://doi.org/10.36547/ams.26.2.537.

DOI: 10.36547/ams.26.2.537

Google Scholar

[14] O.M. Ikumapayi, E. Akinlabi, S.A. Akinlabi, Characterization of high strength aluminium – based surface matrix composite reinforced with low-cost PKSA fabricated by friction stir processing., Mater. Res. Express. 6 (2019). https://doi.org/10.1088/2053-1591/ab395b.

DOI: 10.1088/2053-1591/ab395b

Google Scholar

[15] F.O. Edoziuno, A.A. Adediran, B.U. Odoni, O.G. Utu, A. Olayanju, Physico-chemical and morphological evaluation of palm kernel shell particulate reinforced aluminium matrix composites, Mater. Today Proc. (2020). https://doi.org/10.1016/j.matpr.2020.03.641.

DOI: 10.1016/j.matpr.2020.03.641

Google Scholar

[16] B.U. Odoni, F.O. Edoziuno, C.C. Nwaeju, R.O. Akaluzia, Experimental analysis , predictive modelling and optimization of some physical and mechanical properties of aluminium 6063 alloy based composites reinforced with corn cob ash ., J. Mater. Eng. Struct. 7 (2020) 451–465.

Google Scholar

[17] A. Adesoji, A. Adewale, Evaluation of the properties of Al-6061 alloy reinforced with particulate waste glass, Sci. African. 12 (2021) e00812. https://doi.org/10.1016/j.sciaf.2021.e00812.

DOI: 10.1016/j.sciaf.2021.e00812

Google Scholar

[18] A.A. Yekinni, M.O. Durowoju, J.O. Agunsoye, L.O. Mudashiru, L.A. Animashaun, O.D. Sogunro, Automotive Application of Hybrid Composites of Aluminium Alloy Matrix : A Review of Rice Husk Ash Based Reinforcements, Int. J. Compos. Mater. 9 (2019) 44–52. https://doi.org/10.5923/j.cmaterials.20190902.03.

DOI: 10.1088/1757-899x/805/1/012012

Google Scholar

[19] H.A. Hegazi, Removal of heavy metals from wastewater using agricultural and industrial wastes as adsorbents, HBRC J. (2013). https://doi.org/10.1016/j.hbrcj.2013.08.004.

DOI: 10.1016/j.hbrcj.2013.08.004

Google Scholar

[20] J.E. Hernandez-Ruiz, L. Pino-Rivero, E. Villar-Cocina, Aluminium Matrix Composite with Sugarcane Bagasse Ash as Reinforcement Material, Rev. Cuba. Fis. 36 (2019) 55–59.

Google Scholar

[21] M.S. Reddy, S. V Chetty, S. Premkumar, R.L. Jalappa, Effect of reinforcements and heat treatment on tensile strength of Al-Si-Mg based, 1 (2012) 176–183. https://doi.org/10.6088/ijaser.0020101018.

DOI: 10.6088/ijaser.0020101018

Google Scholar

[22] S. Venkatesan, M.A. Xavior, Mechanical behaviour of Aluminium metal matrix composite reinforced with graphene particulate by stir casting method, J. Chem. Pharm. Sci. 10 (2017) 55–59.

Google Scholar

[23] K.K. Alaneme, M.O. Bodunrin, Mechanical Behaviour of Alumina Reinforced AA6063 Metal Matrix Composites Developed by Two Step – Stir Casting Process, Acta Tech. Corveniensis- Bull. Eng. VI (2013) 105–110.

Google Scholar

[24] K.K. Alaneme, C.A. Oganbule, A. Adewale, Circumferential Notch Test Based Fracture Toughness Investigation of Al-Mg-Si Alloy Composites Reinforced with Alumina and Quarry Dust, J. Chem. Technol. Metall. 55 (2020) 469–478.

Google Scholar

[25] J. Jeevamalar, S.B. Kumar, P. Ramu, G. Suresh, K. Senthilnathan, Investigating the effects of copper cadmium electrode on Inconel 718 during EDM drilling, Mater. Today Proc. (2020). https://doi.org/10.1016/j.matpr.2020.07.416.

DOI: 10.1016/j.matpr.2020.07.416

Google Scholar

[26] G. Suresh, T. Srinivasan, A.J. Rajan, R. Aruna, R. Ravi, R. Vignesh, G.S. Krishnan, A study of delamination characteristics ( drilling ) on carbon fiber reinforced IPN composites during drilling using design experiments, IOP Conf. Ser. Mater. Sci. Eng. 988 (2020) 012008. https://doi.org/10.1088/1757-899X/988/1/012008.

DOI: 10.1088/1757-899x/988/1/012008

Google Scholar

[27] O.P. Balogun, J.A. Omotoyinbo, K.K. Alaneme, A.A. Adediran, Physical and mechanical properties of Entada mannii particulates reinforced composites Heliyon Physical and mechanical properties of Entada mannii particulates reinforced composites, Heliyon. 6 (2020) e04157. https://doi.org/10.1016/j.heliyon.2020.e04157.

DOI: 10.1016/j.heliyon.2020.e04157

Google Scholar

[28] A. V Muley, S. Aravindan, I.P. Singh, Nano and hybrid aluminum based metal matrix composites : an overview, Manuf. Rev. 2 (2015). https://doi.org/10.1051/mfreview/2015018.

DOI: 10.1051/mfreview/2015018

Google Scholar

[29] N. Jesuarockiam, M. Jawaid, E.S. Zainudin, M.T.H. Sultan, R. Yahaya, Enhanced Thermal and Dynamic Mechanical Properties of Synthetic / Natural Hybrid Composites with Graphene Nanoplateletes, Polymers (Basel). 11 (2019) 1085. https://doi.org/10.3390/polym11071085.

DOI: 10.3390/polym11071085

Google Scholar

[30] S.A. Nwose, F.O. Edoziuno, S.O. Osuji, Statistical analysis and Response Surface Modelling of the compressive strength inhibition of crude oil in concrete test cubes, Alger. J. Eng. Technol. 04 (2021) 99–107. https://doi.org/10.5281/zenodo.4696030.

Google Scholar

[31] F.O. Edoziuno, C.C. Nwaeju, A.A. Adediran, E.E. Nnuka, O.S. Adesina, S.A. Nwose, Factorial optimization and predictive modelling of properties of Ukpor clay bonded synthetic moulding sand prepared using River Niger silica sand, Results Mater. 10 (2021) 100194. https://doi.org/10.1016/j.rinma.2021.100194.

DOI: 10.1016/j.rinma.2021.100194

Google Scholar

[32] C.C. Nwobi-okoye, P.C. Okonji, S. Okiy, Optimization of dry compressive strength of groundnut shell ash particles ( GSAp ) and ant hill bonded foundry sand using ann and genetic algorithm, Cogent Eng. 6 (2019) 1–17. https://doi.org/10.1080/23311916.2019.1681055.

DOI: 10.1080/23311916.2019.1681055

Google Scholar