[1]
A.A. Adediran, K.K. Alaneme, I.O. Oladele, Microstructural characteristics and mechanical behaviour of aluminium matrix composites reinforced with Si-based refractory compounds derived from rice husk, Cogent Eng. 8 (2021) 1897928. https://doi.org/10.1080/23311916. 2021.1897928.
DOI: 10.1080/23311916.2021.1897928
Google Scholar
[2]
S. Kumae, D. Arun, Mechanical Properties of Aluminum 6063 Alloy based Graphite Particles Mechanical Properties of Aluminum 6063 Alloy based Graphite Particles Reinforced Metal Matrix Composite, (2017) 1–6.
Google Scholar
[3]
M.D. Sameer, A.K. Birru, Experimental Investigations on Mechanical behavior of Al2O3 and Graphite Reinforced Aluminium Hybrid Metal Composites by Stir Casting Process, Int. J. Sci. Eng. Res. 7 (2016) 37–42.
Google Scholar
[4]
K.K. Alaneme, O.K. Sanusi, Microstructural characteristics , mechanical and wear behaviour of aluminium matrix hybrid composites reinforced with alumina , rice husk ash and graphite, Eng. Sci. Technol. an Int. J. 18 (2015) 416–422. https://doi.org/10.1016/j.jestch.2015.02.003.
DOI: 10.1016/j.jestch.2015.02.003
Google Scholar
[5]
C.O. Ujah, materials Enhanced tribology , thermal and electrical properties of Al-CNT composite processed via spark plasma sintering for transmission conductor, J. Mater. Sci. (2019). https://doi.org/10.1007/s10853-019-03894-x.
DOI: 10.1007/s10853-019-03894-x
Google Scholar
[6]
S.T. Selvamani, S. Premkumar, M. Vigneshwar, P. Hariprasath, K. Palanikumar, Influence of carbon nano tubes on mechanical, metallurgical and tribological behavior of magnesium nanocomposites, J. Magnes. Alloy. 5 (2017) 326–335. https://doi.org/10.1016/j.jma. 2017.08.006.
DOI: 10.1016/j.jma.2017.08.006
Google Scholar
[7]
M.K. Yadav, B. Saini, A. Yadav, Experimental Analysis Of Mechanical Properties Of Al6063 And SIC Composite, Int. J. Mech. Ind. Technol. 3 (2015) 221–227.
Google Scholar
[8]
E.G. Okonkwo, V.S. Aigbodion, P.O. Offor, K.C. Nnakwo, Silica sand modified aluminium composite : an empirical study of the physical , mechanical and morphological properties, Mater. Res. Express. 6 (2019) 076539. https://doi.org/10.1088/2053-1591/ab14c6.
DOI: 10.1088/2053-1591/ab14c6
Google Scholar
[9]
K.K. Alaneme, M.H. Adegun, A.G. Archibong, E.A. Okotete, Mechanical and wear behaviour of aluminium hybrid composites reinforced with varied aggregates of alumina and quarry dust, J. Chem. Technol. Metall. 54 (2019) 1361–1370.
Google Scholar
[10]
K.K. Alaneme, B.U. Odoni, Mechanical properties , wear and corrosion behavior of copper matrix composites reinforced with steel machining chips, Eng. Sci. Technol. an Int. J. 19 (2016) 1593–1599. https://doi.org/10.1016/j.jestch.2016.04.006.
DOI: 10.1016/j.jestch.2016.04.006
Google Scholar
[11]
R. Umunakwe, D.J. Olaleye, A. Oyetunji, O.C. Okoye, I.J. Umunakwe, Assessment of Some Mechanical Properties and Microstructure of Particulate Periwinkle Shell-Aluminium 6063 Metal Matrix Composite ( PPS-ALMMC) Produced by Two-Step Casting., Niger. J. Technol. 36 (2017) 421–427. https://doi.org/http://dx.doi.org/10.4314/njt.v36i2.14.
DOI: 10.4314/njt.v36i2.14
Google Scholar
[12]
F.O. Edoziuno, C.C. Nwaeju, A.A. Adediran, B.U. Odoni, V.R. Arun, Mechanical and microstructural characteristics of Aluminium 6063 Alloy / Palm Kernel shell composites for lightweight applications, Sci. African. 12 (2021) e00781. https://doi.org/10.1016/j.sciaf.2021.e00781.
DOI: 10.1016/j.sciaf.2021.e00781
Google Scholar
[13]
F.O. Edoziuno, B.U. Odoni, F.I. Alo, C.C. Nwaeju, Dry Sliding Wear and Surface Morphological Examination of an Aluminium Matrix Composite Reinforced with Palm Kernel Shell, Acta Metall. Slovaca. 26 (2020) 54–62. https://doi.org/10.36547/ams.26.2.537.
DOI: 10.36547/ams.26.2.537
Google Scholar
[14]
O.M. Ikumapayi, E. Akinlabi, S.A. Akinlabi, Characterization of high strength aluminium – based surface matrix composite reinforced with low-cost PKSA fabricated by friction stir processing., Mater. Res. Express. 6 (2019). https://doi.org/10.1088/2053-1591/ab395b.
DOI: 10.1088/2053-1591/ab395b
Google Scholar
[15]
F.O. Edoziuno, A.A. Adediran, B.U. Odoni, O.G. Utu, A. Olayanju, Physico-chemical and morphological evaluation of palm kernel shell particulate reinforced aluminium matrix composites, Mater. Today Proc. (2020). https://doi.org/10.1016/j.matpr.2020.03.641.
DOI: 10.1016/j.matpr.2020.03.641
Google Scholar
[16]
B.U. Odoni, F.O. Edoziuno, C.C. Nwaeju, R.O. Akaluzia, Experimental analysis , predictive modelling and optimization of some physical and mechanical properties of aluminium 6063 alloy based composites reinforced with corn cob ash ., J. Mater. Eng. Struct. 7 (2020) 451–465.
Google Scholar
[17]
A. Adesoji, A. Adewale, Evaluation of the properties of Al-6061 alloy reinforced with particulate waste glass, Sci. African. 12 (2021) e00812. https://doi.org/10.1016/j.sciaf.2021.e00812.
DOI: 10.1016/j.sciaf.2021.e00812
Google Scholar
[18]
A.A. Yekinni, M.O. Durowoju, J.O. Agunsoye, L.O. Mudashiru, L.A. Animashaun, O.D. Sogunro, Automotive Application of Hybrid Composites of Aluminium Alloy Matrix : A Review of Rice Husk Ash Based Reinforcements, Int. J. Compos. Mater. 9 (2019) 44–52. https://doi.org/10.5923/j.cmaterials.20190902.03.
DOI: 10.1088/1757-899x/805/1/012012
Google Scholar
[19]
H.A. Hegazi, Removal of heavy metals from wastewater using agricultural and industrial wastes as adsorbents, HBRC J. (2013). https://doi.org/10.1016/j.hbrcj.2013.08.004.
DOI: 10.1016/j.hbrcj.2013.08.004
Google Scholar
[20]
J.E. Hernandez-Ruiz, L. Pino-Rivero, E. Villar-Cocina, Aluminium Matrix Composite with Sugarcane Bagasse Ash as Reinforcement Material, Rev. Cuba. Fis. 36 (2019) 55–59.
Google Scholar
[21]
M.S. Reddy, S. V Chetty, S. Premkumar, R.L. Jalappa, Effect of reinforcements and heat treatment on tensile strength of Al-Si-Mg based, 1 (2012) 176–183. https://doi.org/10.6088/ijaser.0020101018.
DOI: 10.6088/ijaser.0020101018
Google Scholar
[22]
S. Venkatesan, M.A. Xavior, Mechanical behaviour of Aluminium metal matrix composite reinforced with graphene particulate by stir casting method, J. Chem. Pharm. Sci. 10 (2017) 55–59.
Google Scholar
[23]
K.K. Alaneme, M.O. Bodunrin, Mechanical Behaviour of Alumina Reinforced AA6063 Metal Matrix Composites Developed by Two Step – Stir Casting Process, Acta Tech. Corveniensis- Bull. Eng. VI (2013) 105–110.
Google Scholar
[24]
K.K. Alaneme, C.A. Oganbule, A. Adewale, Circumferential Notch Test Based Fracture Toughness Investigation of Al-Mg-Si Alloy Composites Reinforced with Alumina and Quarry Dust, J. Chem. Technol. Metall. 55 (2020) 469–478.
Google Scholar
[25]
J. Jeevamalar, S.B. Kumar, P. Ramu, G. Suresh, K. Senthilnathan, Investigating the effects of copper cadmium electrode on Inconel 718 during EDM drilling, Mater. Today Proc. (2020). https://doi.org/10.1016/j.matpr.2020.07.416.
DOI: 10.1016/j.matpr.2020.07.416
Google Scholar
[26]
G. Suresh, T. Srinivasan, A.J. Rajan, R. Aruna, R. Ravi, R. Vignesh, G.S. Krishnan, A study of delamination characteristics ( drilling ) on carbon fiber reinforced IPN composites during drilling using design experiments, IOP Conf. Ser. Mater. Sci. Eng. 988 (2020) 012008. https://doi.org/10.1088/1757-899X/988/1/012008.
DOI: 10.1088/1757-899x/988/1/012008
Google Scholar
[27]
O.P. Balogun, J.A. Omotoyinbo, K.K. Alaneme, A.A. Adediran, Physical and mechanical properties of Entada mannii particulates reinforced composites Heliyon Physical and mechanical properties of Entada mannii particulates reinforced composites, Heliyon. 6 (2020) e04157. https://doi.org/10.1016/j.heliyon.2020.e04157.
DOI: 10.1016/j.heliyon.2020.e04157
Google Scholar
[28]
A. V Muley, S. Aravindan, I.P. Singh, Nano and hybrid aluminum based metal matrix composites : an overview, Manuf. Rev. 2 (2015). https://doi.org/10.1051/mfreview/2015018.
DOI: 10.1051/mfreview/2015018
Google Scholar
[29]
N. Jesuarockiam, M. Jawaid, E.S. Zainudin, M.T.H. Sultan, R. Yahaya, Enhanced Thermal and Dynamic Mechanical Properties of Synthetic / Natural Hybrid Composites with Graphene Nanoplateletes, Polymers (Basel). 11 (2019) 1085. https://doi.org/10.3390/polym11071085.
DOI: 10.3390/polym11071085
Google Scholar
[30]
S.A. Nwose, F.O. Edoziuno, S.O. Osuji, Statistical analysis and Response Surface Modelling of the compressive strength inhibition of crude oil in concrete test cubes, Alger. J. Eng. Technol. 04 (2021) 99–107. https://doi.org/10.5281/zenodo.4696030.
Google Scholar
[31]
F.O. Edoziuno, C.C. Nwaeju, A.A. Adediran, E.E. Nnuka, O.S. Adesina, S.A. Nwose, Factorial optimization and predictive modelling of properties of Ukpor clay bonded synthetic moulding sand prepared using River Niger silica sand, Results Mater. 10 (2021) 100194. https://doi.org/10.1016/j.rinma.2021.100194.
DOI: 10.1016/j.rinma.2021.100194
Google Scholar
[32]
C.C. Nwobi-okoye, P.C. Okonji, S. Okiy, Optimization of dry compressive strength of groundnut shell ash particles ( GSAp ) and ant hill bonded foundry sand using ann and genetic algorithm, Cogent Eng. 6 (2019) 1–17. https://doi.org/10.1080/23311916.2019.1681055.
DOI: 10.1080/23311916.2019.1681055
Google Scholar