[1]
Information on https://earthnworld.com/sugar-producing-countries-in-the-world/.
Google Scholar
[2]
A. Dhawan, N. Gupta, R. Goyal, K.K. Saxena, Evaluation of mechanical properties of concrete manufactured with fly ash, bagasse ash and banana fibre, Mater. Today: Proc. 44 (2021) 17-22.
DOI: 10.1016/j.matpr.2020.06.006
Google Scholar
[3]
B.M. Devi, H.S. Chore, Feasibility study on bagasse ash as light weight material for road construction, Mater. Today: Proc. 27 (2020) 1668-1673.
DOI: 10.1016/j.matpr.2020.03.568
Google Scholar
[4]
B. Yogitha, M. Karthikeyan, M.G.M. Reddy, Progress of sugarcane bagasse ash applications in production of eco-friendly concrete – Review, Mater. Today: Proc. 33 (2020) 695-699.
DOI: 10.1016/j.matpr.2020.05.814
Google Scholar
[5]
P. Jha, A.K. Sachan, R.P. Singh, Agro-waste sugarcane bagasse ash (ScBA) as partial replacement of binder material in concrete, Mater. Today: Proc. 44 (2021) 419-427.
DOI: 10.1016/j.matpr.2020.09.751
Google Scholar
[6]
M. S. H. M. Sani, F. Muftah, Z. Muda, The properties of special concrete using washed bottom ash (WBA) as partial sand replacement, Int. J. Sustain. Construct. Eng. Technol. 1 (2010) 65-76.
Google Scholar
[7]
J.B. Gorme, M.C. Maniquiz, S.S. Kim, Y.G. Son, Y.T. Kim, L.H., Characterization of bottom ash as an adsorbent of lead from aqueous solutions. Environ. Eng. Res. 15 (2010) 207–213.
DOI: 10.4491/eer.2010.15.4.207
Google Scholar
[8]
H.J. Sukpreabprom, H.J., O-a. Arqueropanyo, W. Naksata, P. Sooksamiti, S. Janhom, Single and binary adsorption of Cd(II) and Zn(II) ions from aqueous solutions onto bottom ash. Korean J. Chem. Eng. 32 (2015) 896-902.
DOI: 10.1007/s11814-014-0309-7
Google Scholar
[9]
S.J. Santosa, Z. Rahmat, S. Sudiono, Adsorption characteristics of methylene blue on bagasse bottom ash, in: J.C. Taylor (Ed.), Advances in Chemistry Research Vol. 61, Nova Science Publishers, New York, 2020, pp.237-260.
Google Scholar
[10]
S.M. Kanawade, R.W. Gaikwad, S.A. Misal, Low cost sugarcane bagasse ash as an adsorbent for dye removal from dye effluent, Int. J. Chem. Eng. Appl., 1 (2010), 309-318.
DOI: 10.7763/ijcea.2010.v1.54
Google Scholar
[11]
S. Lagergren, Zur theorie der sogenannten adsorption gelöster stoffe. Kungliga Svenska Vetenskapsakad. Handlingar 24 (1898) 1–39.
Google Scholar
[12]
Y.S. Ho, D. McKay, Pseudo-second order model for sorption processes, Process Biochem. 34 (1999) 451–465.
DOI: 10.1016/s0032-9592(98)00112-5
Google Scholar
[13]
S.J. Santosa, Sorption kinetics of Cd(II) species on humic acid-based sorbent. Clean-Soil, Air, Water, 42 (2014) 760–766.
DOI: 10.1002/clen.201200684
Google Scholar
[14]
S.J. Santosa, S. Koesnarpadi, D. Siswanta, B. Rusdiarso, Humic acid-coated magnetic nanoparticles as highly effective paramagnetic adsorbent for p-chlorophenol, in J.C. Taylor (Ed.), Advances in Chemistry Research, Vol. 58, Nova Science Publishers. New York, 2019, pp.143-167.
Google Scholar
[15]
H. Gunzler, H-U. Gremlich, IR Spectroscopy, an Introduction, Wiley-VCH, Weinheim, (2002).
Google Scholar
[16]
P. Bayliss, Mineral Powder Diffraction File, Pensylvania, (1980).
Google Scholar
[17]
S.J. Santosa, S. Sudiono, D. Siswanta, E.S. Kunarti, S.R. Dewi, Mechanism of the removal of AuCl4− ions from aqueous solution by means of peat soil humin. Ads. Sci. Technol. 29 (2011) 733–746.
DOI: 10.1260/0263-6174.29.8.733
Google Scholar
[18]
S.Verma, B. Prasad, I.M. Mishra, Treatment of purified terephthalic acid wastewater using a bio-waste-adsorbent bagasse fly ash (BFA). Environ. Sci. Pollut. Res. Int. 24 (2017), 1953-1966.
DOI: 10.1007/s11356-016-7986-1
Google Scholar
[19]
K. Pacławski, T. Sak, Kinetics and mechanism of the reaction of gold(III) chloride complexes with formic acid. J. Min. Metall. Sect. B Metall. 51 (2015) 133–142.
DOI: 10.2298/jmmb141024017p
Google Scholar
[20]
B. Parajuli, C.R. Adhikari, H. Kawakita, K. Kajiyama, K. Ohto, K. Kajiyama, Reduction and accumulation of Au(III) by grape waste: A kinetics approach, Funct. Pollym. 68 (2008) 1194–1199.
DOI: 10.1016/j.reactfunctpolym.2008.04.006
Google Scholar