Cost-Effective Synthesis of Cobalt Ferrite Nanoparticles by Sol-Gel Technique

Article Preview

Abstract:

In material science, doping method is employed to produce nanoferrites with desired characteristics. Recently, cobalt doped iron oxide nanomaterials have gained importance in industry for multiple electronic/electrical applications. Large number of methods have been adopted for the synthesis of nanoparticles (NPs), but high manufacturing cost, uniform sized, and anisotropic behaviors limit the commercial applications. In the presented work, cobalt doped (Co-Fe nanomaterials) are developed by a cost-effective sol-gel approach. The doped cobalt ferrites NPs (1%, 2%, and 3% doping of cobalt) were prepared and characterized by XRD, SEM & TEM, FTIR, and VSM techniques. XRD and microscopic (SEM & TEM) analysis revealed synthesis of hexagonal structured cobalt ferrite sized from ~16nm to ~8nm, with the increasing doping pattern of Cobalt from 1% to 3%. FTIR analysis showed the formation of well-structured oxides, which is in strong agreement with XRD and microscopy techniques. Moreover, VSM analysis revealed that cobalt ferrite nanoparticles possess ferromagnetic properties with Ms, Mr and Hc values of 0.038emu/g, 0.005emu/g and 405.19Oe respectively. In addition, squareness (Mr/Ms = 0.16) indicates the presence of single domain spherical particles.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1067)

Pages:

213-219

Citation:

Online since:

August 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Zhang, J. Song, L. Niu, J. Mao, Y. Zhang, ZnFe2O4 nanoparticles: synthesis, characterization, and enhanced gas sensing property for acetone, Sens. Actuators, 221 (2015) 55–62.

DOI: 10.1016/j.snb.2015.06.040

Google Scholar

[2] H. K. M. Nasrollahzadeh, M. Bagherzadeh, Preparation, characterization and catalytic activity of CoFe2O4 nanoparticles as a magnetically recoverable catalyst for selective oxidation of benzyl alcohol to benzaldehyde and reduction of organic dyes, J. Colloid Interface Sci. 465 (2016) 271–278.

DOI: 10.1016/j.jcis.2015.11.074

Google Scholar

[3] J. Sawant, R. Bamane, V. Shejwal, Comparison of drug delivery potentials of surface functionalized cobalt and zinc ferrite nanohybrids for curcumin in to MCF-7 breast cancer cells, J. Magn. Magn. Mater. 417, (2016) 222–229.

DOI: 10.1016/j.jmmm.2016.05.061

Google Scholar

[4] S. Bohara, N. Thorat, A. Chaurasia, Cancer cell extinction through a magnetic fluid hyperthermia treatment produced by superparamagnetic Co-Zn ferrite nanoparticles, RSC Adv. 5 (2015) 47225– 47234.

DOI: 10.1039/c5ra04553c

Google Scholar

[5] C. L. J. Leng, J. Li, J. Ren, L. Deng, Star–block copolymer micellar nanocomposites with Mn, Zn-doped nano-ferrite as superparamagnetic MRI contrast agent for tumor imaging, Mater. Lett. vol. 152, (2015) 185–188.

DOI: 10.1016/j.matlet.2015.03.120

Google Scholar

[6] M. K. Lima-Tenório et al., Tuning the magnetic properties of ferrite nanoparticles by Zn and Co doping, Mater. Lett. 195 (2017) 151–155.

DOI: 10.1016/j.matlet.2017.02.122

Google Scholar

[7] K. K. Kefeni, B. B. Mamba, and T. A. M. Msagati, Application of spinel ferrite nanoparticles in water and wastewater treatment: A review, Sep. Purif. Technol. 188 (2017) 399–422.

DOI: 10.1016/j.seppur.2017.07.015

Google Scholar

[8] R. R. Palem et al., Nanostructured Fe2O3@nitrogen-doped multiwalled nanotube/cellulose nanocrystal composite material electrodes for high-performance supercapacitor applications, J. Mater. Res. Technol. 9(4) (2020) 7615–7627.

DOI: 10.1016/j.jmrt.2020.05.058

Google Scholar

[9] W. Hussain et al., Comparative study of cobalt sulphides properties for photocatalytic and battery applications, Semicond. Sci. Technol. 34(9) (2019) 095015.

DOI: 10.1088/1361-6641/ab314d

Google Scholar

[10] M. Sulaman et al., High-performance solution-processed colloidal quantum dots-based tandem broadband photodetectors with dielectric interlayer,, Nanotechnology, vol. 30, no. 46, p.465203, Nov. (2019).

DOI: 10.1088/1361-6528/ab3b7a

Google Scholar

[11] M. Sulaman et al., Ultra-sensitive solution-processed broadband photodetectors based on vertical field-effect transistor, Nanotechnology, 31 (10) (2020) 105203.

DOI: 10.1088/1361-6528/ab5a26

Google Scholar

[12] S. F. Hasany, N. H. Abdurahman, A. R. Sunarti, and A. Kumar, Non-covalent assembly of maghemite-multiwalled carbon nanotubes for efficient lead removal from aqueous solution,, Aust. J. Chem., vol. 66, no. 11, p.1440–1446, (2013).

DOI: 10.1071/ch13281

Google Scholar

[13] S. F. Hasany, N. H. Abdurahman, A. R. Sunarti, and R. Jose, Magnetic Iron Oxide Nanoparticles: Chemical Synthesis and Applications Review, Curr. Nanosci. 9 (2013) 561–575.

DOI: 10.2174/15734137113099990085

Google Scholar

[14] G. Cao and C. J. Brinker, Annual review of Nano Research, Volume 2. World Scientific Publishing Co. Pte. Ltd, (2008).

Google Scholar

[15] P. Biehl, M. von der Lühe, S. Dutz, and F. Schacher, Synthesis, Characterization, and Applications of Magnetic Nanoparticles Featuring Polyzwitterionic Coatings, Polymers (Basel).10 (2018) 91.

DOI: 10.3390/polym10010091

Google Scholar

[16] C. W. White, L. A. Withrow, S.P. Sorge, K. D. Meldrum, A. Budai, J.D. Thompson and J.R. Boatner, Oriented Ferromagnetic Fe-Pt Alloy Nanoparticles Produced in Al2O3 by Ion-Beam Synthesis, J. Appl. Phys. 93 (2003) 5656–5669.

DOI: 10.1063/1.1565691

Google Scholar

[17] X. Lasheras, L. Insausti, M. de Muro, I.G. Garaio, E. Plazaola, F. Moros, M. De Matteis, L. de la Fuente and J.M. Lezama, Chemical Synthesis and Magnetic Properties of Monodisperse Nickel Ferrite Nanoparticles for Biomedical Applications. J. Phys. Chem. 120, (2016) 3492–3500.

DOI: 10.1021/acs.jpcc.5b10216

Google Scholar

[18] A. Rodrigues, P. J. Gomes, I.T. Almeida, B.G. Araujo, J.P. Castanheira, E. Coutinho, Magnetic liposomes based on nickel ferrite nanoparticles for biomedical applications, Phys. Chem. Chem. Phys. 17 (2015) 18011–18021.

DOI: 10.1039/c5cp01894c

Google Scholar

[19] T. Ruthradevi, G. C. Akbar, J. Kumar, G.S. Thamizhavel, A. Kumar, G.A. Vatsa, R.K. Dannangoda, and E. K. Martirosyan, Investigations on nickel ferrite embedded calcium phosphate nanoparticles for biomedical applications, J. Alloy. Compd. 19 (2017) 3211–3219.

DOI: 10.1016/j.jallcom.2016.11.300

Google Scholar

[20] U. Cornell, R.M. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurences and Uses, Wiley-VCH:Weinheim, Germany, (2003).

DOI: 10.1002/3527602097

Google Scholar

[21] R. P. Sharma, S. D. Raut, R. M. Mulani, A. S. Kadam, and R. S. Mane, Sol–gel auto-combustion mediated cobalt ferrite nanoparticles: a potential material for antimicrobial applications, Int Nano Lett. 9 (2019) 141-147.

DOI: 10.1007/s40089-019-0268-4

Google Scholar

[22] Biocompatibility of transition metal-substituted cobalt ferrite nanoparticles, J Nanopart Res. 16 (2014) 2510.

Google Scholar

[23] M. Gharibshahian, O. Mirzaee, and M. S. Nourbakhsh, Evaluation of superparamagnetic and biocompatible properties of mesoporous silica coated cobalt ferrite nanoparticles synthesized via microwave modified Pechini method, J Magn Magn Mater. 425 (2017) 48-56.

DOI: 10.1016/j.jmmm.2016.10.116

Google Scholar

[24] Z. HM and H. A. Al-Heniti SH, Effect of Al3+ ion addition on the magnetic properties of cobalt ferrite at moderate and low temperatures, J Magn Magn Mater. 401 (2016) 1027–1032.

DOI: 10.1016/j.jmmm.2015.11.021

Google Scholar

[25] P. Vlazan, I. Miron, and P. Sfirloaga, Cobalt ferrite substituted with Mn: Synthesis method, characterization and magnetic properties, Ceram Int. 41 (2015) 3760–3765.

DOI: 10.1016/j.ceramint.2014.11.051

Google Scholar

[26] S. F. Hasany, A. Rehman, R. Jose, and I. Ahmed, Iron oxide magnetic nanoparticles: A short review. AIP Conf Proc. 1502 (2012) 298-321.

DOI: 10.1063/1.4769153

Google Scholar

[27] H. P. Klug and L. E. Alexander, X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd Ed.. John Wiley & Sons, New York, (1974).

DOI: 10.1002/xrs.1300040415

Google Scholar

[28] W. H. Borchert H, Shevchenko EV, Robert A, Mekis I, Kornowski A, Grübel G, Determination of nanocrystal sizes: a comparison of TEM, SAXS, and XRD studies of highly monodisperse CoPt3 particles, Langmuir. 21 (2005) 1931-1936.

DOI: 10.1021/la0477183

Google Scholar

[29] Information on http://www.bnl.gov.

Google Scholar

[30] M. Margabandhu, S. Sendhilnathan, S. Senthilkumar, and D. Gajalakshmi, Investigation of structural, morphological, magnetic properties and biomedical applications of Cu2+ substituted uncoated cobalt ferrite nanoparticles, Brazilian Arch Biol Technol. 59 (2016) 1-10.

DOI: 10.1590/1678-4324-2016161046

Google Scholar

[31] K.Butter, P. H. H Bomans., P. M. Frederik, G. J.Vroege and A. P. Philipse, Direct observation of dipolar chains in iron ferrofluids by cryogenic electron microscopy, Nat Mater. 15(2003) 88-91.

DOI: 10.1038/nmat811

Google Scholar

[32] D. Yuliantika, A. Taufiq, A. Hidayat, Sunaryono, N. Hidayat, and S. Soontaranon, Exploring Structural Properties of Cobalt Ferrite Nanoparticles from Natural Sand, IOP Conf Ser Mater Sci Eng. 515 (2019) 012047.

DOI: 10.1088/1757-899x/515/1/012047

Google Scholar

[33] Z. H. Jing and S. H. Wu, Preparation and magnetic properties of spherical α-Fe2O3 nanoparticles via a non-aqueous medium, Mater Chem Phys. 92 (2005) 600-603.

DOI: 10.1016/j.matchemphys.2005.02.005

Google Scholar

[34] S. Kumar, V. Singh, S. Aggarwal, U. K. Mandal, and R. K. Kotnala, Synthesis of nanocrystalline Ni0.5Zn0.5Fe2O4 ferrite and study of its magnetic behavior at different temperatures, Mater Sci Eng B Solid-State Mater Adv Technol. 166 (2010) 76-82.

DOI: 10.1016/j.mseb.2009.10.009

Google Scholar

[35] A. Druc, A. Dumitrescu, A. Borhan, V. Nica, A. Iordan, and M. Palamaru, Optimization of synthesis conditions and the study of magnetic and dielectric properties for MgFe2O4 ferrite, Cent Eur J Chem. 11 (2013) 1330-1342.

DOI: 10.2478/s11532-013-0260-1

Google Scholar