[1]
J. Zhang, J. Song, L. Niu, J. Mao, Y. Zhang, ZnFe2O4 nanoparticles: synthesis, characterization, and enhanced gas sensing property for acetone, Sens. Actuators, 221 (2015) 55–62.
DOI: 10.1016/j.snb.2015.06.040
Google Scholar
[2]
H. K. M. Nasrollahzadeh, M. Bagherzadeh, Preparation, characterization and catalytic activity of CoFe2O4 nanoparticles as a magnetically recoverable catalyst for selective oxidation of benzyl alcohol to benzaldehyde and reduction of organic dyes, J. Colloid Interface Sci. 465 (2016) 271–278.
DOI: 10.1016/j.jcis.2015.11.074
Google Scholar
[3]
J. Sawant, R. Bamane, V. Shejwal, Comparison of drug delivery potentials of surface functionalized cobalt and zinc ferrite nanohybrids for curcumin in to MCF-7 breast cancer cells, J. Magn. Magn. Mater. 417, (2016) 222–229.
DOI: 10.1016/j.jmmm.2016.05.061
Google Scholar
[4]
S. Bohara, N. Thorat, A. Chaurasia, Cancer cell extinction through a magnetic fluid hyperthermia treatment produced by superparamagnetic Co-Zn ferrite nanoparticles, RSC Adv. 5 (2015) 47225– 47234.
DOI: 10.1039/c5ra04553c
Google Scholar
[5]
C. L. J. Leng, J. Li, J. Ren, L. Deng, Star–block copolymer micellar nanocomposites with Mn, Zn-doped nano-ferrite as superparamagnetic MRI contrast agent for tumor imaging, Mater. Lett. vol. 152, (2015) 185–188.
DOI: 10.1016/j.matlet.2015.03.120
Google Scholar
[6]
M. K. Lima-Tenório et al., Tuning the magnetic properties of ferrite nanoparticles by Zn and Co doping, Mater. Lett. 195 (2017) 151–155.
DOI: 10.1016/j.matlet.2017.02.122
Google Scholar
[7]
K. K. Kefeni, B. B. Mamba, and T. A. M. Msagati, Application of spinel ferrite nanoparticles in water and wastewater treatment: A review, Sep. Purif. Technol. 188 (2017) 399–422.
DOI: 10.1016/j.seppur.2017.07.015
Google Scholar
[8]
R. R. Palem et al., Nanostructured Fe2O3@nitrogen-doped multiwalled nanotube/cellulose nanocrystal composite material electrodes for high-performance supercapacitor applications, J. Mater. Res. Technol. 9(4) (2020) 7615–7627.
DOI: 10.1016/j.jmrt.2020.05.058
Google Scholar
[9]
W. Hussain et al., Comparative study of cobalt sulphides properties for photocatalytic and battery applications, Semicond. Sci. Technol. 34(9) (2019) 095015.
DOI: 10.1088/1361-6641/ab314d
Google Scholar
[10]
M. Sulaman et al., High-performance solution-processed colloidal quantum dots-based tandem broadband photodetectors with dielectric interlayer,, Nanotechnology, vol. 30, no. 46, p.465203, Nov. (2019).
DOI: 10.1088/1361-6528/ab3b7a
Google Scholar
[11]
M. Sulaman et al., Ultra-sensitive solution-processed broadband photodetectors based on vertical field-effect transistor, Nanotechnology, 31 (10) (2020) 105203.
DOI: 10.1088/1361-6528/ab5a26
Google Scholar
[12]
S. F. Hasany, N. H. Abdurahman, A. R. Sunarti, and A. Kumar, Non-covalent assembly of maghemite-multiwalled carbon nanotubes for efficient lead removal from aqueous solution,, Aust. J. Chem., vol. 66, no. 11, p.1440–1446, (2013).
DOI: 10.1071/ch13281
Google Scholar
[13]
S. F. Hasany, N. H. Abdurahman, A. R. Sunarti, and R. Jose, Magnetic Iron Oxide Nanoparticles: Chemical Synthesis and Applications Review, Curr. Nanosci. 9 (2013) 561–575.
DOI: 10.2174/15734137113099990085
Google Scholar
[14]
G. Cao and C. J. Brinker, Annual review of Nano Research, Volume 2. World Scientific Publishing Co. Pte. Ltd, (2008).
Google Scholar
[15]
P. Biehl, M. von der Lühe, S. Dutz, and F. Schacher, Synthesis, Characterization, and Applications of Magnetic Nanoparticles Featuring Polyzwitterionic Coatings, Polymers (Basel).10 (2018) 91.
DOI: 10.3390/polym10010091
Google Scholar
[16]
C. W. White, L. A. Withrow, S.P. Sorge, K. D. Meldrum, A. Budai, J.D. Thompson and J.R. Boatner, Oriented Ferromagnetic Fe-Pt Alloy Nanoparticles Produced in Al2O3 by Ion-Beam Synthesis, J. Appl. Phys. 93 (2003) 5656–5669.
DOI: 10.1063/1.1565691
Google Scholar
[17]
X. Lasheras, L. Insausti, M. de Muro, I.G. Garaio, E. Plazaola, F. Moros, M. De Matteis, L. de la Fuente and J.M. Lezama, Chemical Synthesis and Magnetic Properties of Monodisperse Nickel Ferrite Nanoparticles for Biomedical Applications. J. Phys. Chem. 120, (2016) 3492–3500.
DOI: 10.1021/acs.jpcc.5b10216
Google Scholar
[18]
A. Rodrigues, P. J. Gomes, I.T. Almeida, B.G. Araujo, J.P. Castanheira, E. Coutinho, Magnetic liposomes based on nickel ferrite nanoparticles for biomedical applications, Phys. Chem. Chem. Phys. 17 (2015) 18011–18021.
DOI: 10.1039/c5cp01894c
Google Scholar
[19]
T. Ruthradevi, G. C. Akbar, J. Kumar, G.S. Thamizhavel, A. Kumar, G.A. Vatsa, R.K. Dannangoda, and E. K. Martirosyan, Investigations on nickel ferrite embedded calcium phosphate nanoparticles for biomedical applications, J. Alloy. Compd. 19 (2017) 3211–3219.
DOI: 10.1016/j.jallcom.2016.11.300
Google Scholar
[20]
U. Cornell, R.M. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurences and Uses, Wiley-VCH:Weinheim, Germany, (2003).
DOI: 10.1002/3527602097
Google Scholar
[21]
R. P. Sharma, S. D. Raut, R. M. Mulani, A. S. Kadam, and R. S. Mane, Sol–gel auto-combustion mediated cobalt ferrite nanoparticles: a potential material for antimicrobial applications, Int Nano Lett. 9 (2019) 141-147.
DOI: 10.1007/s40089-019-0268-4
Google Scholar
[22]
Biocompatibility of transition metal-substituted cobalt ferrite nanoparticles, J Nanopart Res. 16 (2014) 2510.
Google Scholar
[23]
M. Gharibshahian, O. Mirzaee, and M. S. Nourbakhsh, Evaluation of superparamagnetic and biocompatible properties of mesoporous silica coated cobalt ferrite nanoparticles synthesized via microwave modified Pechini method, J Magn Magn Mater. 425 (2017) 48-56.
DOI: 10.1016/j.jmmm.2016.10.116
Google Scholar
[24]
Z. HM and H. A. Al-Heniti SH, Effect of Al3+ ion addition on the magnetic properties of cobalt ferrite at moderate and low temperatures, J Magn Magn Mater. 401 (2016) 1027–1032.
DOI: 10.1016/j.jmmm.2015.11.021
Google Scholar
[25]
P. Vlazan, I. Miron, and P. Sfirloaga, Cobalt ferrite substituted with Mn: Synthesis method, characterization and magnetic properties, Ceram Int. 41 (2015) 3760–3765.
DOI: 10.1016/j.ceramint.2014.11.051
Google Scholar
[26]
S. F. Hasany, A. Rehman, R. Jose, and I. Ahmed, Iron oxide magnetic nanoparticles: A short review. AIP Conf Proc. 1502 (2012) 298-321.
DOI: 10.1063/1.4769153
Google Scholar
[27]
H. P. Klug and L. E. Alexander, X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd Ed.. John Wiley & Sons, New York, (1974).
DOI: 10.1002/xrs.1300040415
Google Scholar
[28]
W. H. Borchert H, Shevchenko EV, Robert A, Mekis I, Kornowski A, Grübel G, Determination of nanocrystal sizes: a comparison of TEM, SAXS, and XRD studies of highly monodisperse CoPt3 particles, Langmuir. 21 (2005) 1931-1936.
DOI: 10.1021/la0477183
Google Scholar
[29]
Information on http://www.bnl.gov.
Google Scholar
[30]
M. Margabandhu, S. Sendhilnathan, S. Senthilkumar, and D. Gajalakshmi, Investigation of structural, morphological, magnetic properties and biomedical applications of Cu2+ substituted uncoated cobalt ferrite nanoparticles, Brazilian Arch Biol Technol. 59 (2016) 1-10.
DOI: 10.1590/1678-4324-2016161046
Google Scholar
[31]
K.Butter, P. H. H Bomans., P. M. Frederik, G. J.Vroege and A. P. Philipse, Direct observation of dipolar chains in iron ferrofluids by cryogenic electron microscopy, Nat Mater. 15(2003) 88-91.
DOI: 10.1038/nmat811
Google Scholar
[32]
D. Yuliantika, A. Taufiq, A. Hidayat, Sunaryono, N. Hidayat, and S. Soontaranon, Exploring Structural Properties of Cobalt Ferrite Nanoparticles from Natural Sand, IOP Conf Ser Mater Sci Eng. 515 (2019) 012047.
DOI: 10.1088/1757-899x/515/1/012047
Google Scholar
[33]
Z. H. Jing and S. H. Wu, Preparation and magnetic properties of spherical α-Fe2O3 nanoparticles via a non-aqueous medium, Mater Chem Phys. 92 (2005) 600-603.
DOI: 10.1016/j.matchemphys.2005.02.005
Google Scholar
[34]
S. Kumar, V. Singh, S. Aggarwal, U. K. Mandal, and R. K. Kotnala, Synthesis of nanocrystalline Ni0.5Zn0.5Fe2O4 ferrite and study of its magnetic behavior at different temperatures, Mater Sci Eng B Solid-State Mater Adv Technol. 166 (2010) 76-82.
DOI: 10.1016/j.mseb.2009.10.009
Google Scholar
[35]
A. Druc, A. Dumitrescu, A. Borhan, V. Nica, A. Iordan, and M. Palamaru, Optimization of synthesis conditions and the study of magnetic and dielectric properties for MgFe2O4 ferrite, Cent Eur J Chem. 11 (2013) 1330-1342.
DOI: 10.2478/s11532-013-0260-1
Google Scholar