Synthesis and Characterization of Nd-Doped Calcium Bismuth Cobaltites for Thermoelectric Applications

Article Preview

Abstract:

Thermoelectricity is the best technology for converting wasted heat into clean electrical energy. Calcium Bismuth cobaltites Ca2.7Bi0.3-xNdxCo4O9+⸹ was synthesized using WOWs Sol-gel method with (x=0.0,0.05) doped with Neodymium. A structural study was carried out using the X-rays diffraction (XRD), which confirmed the Monoclinic structure of all the prepared samples. The Electrical properties were studied by using two-probe method. The thermal transport properties of the samples were measured at room temperature using the Advantageous transient plane source (ATPS) method. At room temperature thermal conductivity was measured. Seebeck coefficient as a function of temperature measurement revealed that doping Neodymium considerably increases the value of the Seebeck coefficient when compared to previously published values. At the end we measured the figure of merit (ZT).

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1067)

Pages:

239-245

Citation:

Online since:

August 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Almaktar, M. Shaaban, Prospects of renewable energy as a non-rivalry energy alternative in Libya, Renew. Sustain. Energy Rev.143 (2021) 110852.

DOI: 10.1016/j.rser.2021.110852

Google Scholar

[2] S. Shittu, G. Li, X. Zhao, and X. Ma, Numerical Analysis of a Segmented Annular Thermoelectric Generator, Adv. in Heat Transf. and Therm. Engg. Springer, (2021) 449-454.

DOI: 10.1007/978-981-33-4765-6_77

Google Scholar

[3] P. Kumar, R. Gautam, S. Kumari, and A. S. Verma, Investigation of inherent properties of XScZ (X= Li, Na, K; Z= C, Si, Ge) half-Heusler compounds: appropriate for photovoltaic and thermoelectric applications, Phys. B: Conden. Matter 615 (2021) 412536.

DOI: 10.1016/j.physb.2020.412536

Google Scholar

[4] Y. Zhang, C. Xing, Y. Liu, M. Li, K. Xiao, P. Guardia and S. Lee, Influence of copper telluride nanodomains on the transport properties of n-type bismuth telluride, Chem. Engg. 418 (2021) 129374.

DOI: 10.1016/j.cej.2021.129374

Google Scholar

[5] M. Lallart, L. Yan, H. Miki, G. Sebald, G. Diguet, M. Ohtsuka, and M. Kohl, Heusler alloy-based heat engine using pyroelectric conversion for small-scale thermal energy harvesting, App. Energy 288 (2021) 116617.

DOI: 10.1016/j.apenergy.2021.116617

Google Scholar

[6] Z. Xu, X. Sun, K. Xiong, Z. Chen, Y. Shang, R. Guo, S. Cai, and C. Zheng, A review of the research progress on the interface between oxide fiber and oxide ceramic matrix, Ceram. Int. 5 (2021) 5896-5908.

DOI: 10.1016/j.ceramint.2020.11.039

Google Scholar

[7] Y. Abbas and M. Anis-ur-Rehman, Structural, dielectric and transport properties of samarium-doped cobaltites, Ceram. Int. 8 (2021) 10638-10649.

DOI: 10.1016/j.ceramint.2021.12.278

Google Scholar

[8] X. Liu, M. Fan, X. Zhu, Z. Tian, X. Li, and H. Song, Optimising the thermoelectric properties of Bi2Sr2Co2Oy using Ag substitution and Nano-SiC doping, Ceram. Int. 21 (2021) 30657-30664.

DOI: 10.1016/j.ceramint.2021.07.243

Google Scholar

[9] G. Kozhina, V. Mitrofanov, O. Fedorova, A. Fetisov, A. Murzakaev, and S. Estemirova, Grain growth kinetics, microstructure and magnetic properties of mechanically activated Nd1− xCaxMnO3±δ manganites, J. Alloys and Comp. 864 (2021) 158816.

DOI: 10.1016/j.jallcom.2021.158816

Google Scholar

[10] X. Qian, J. Zhou, and G. Chen, Phonon-engineered extreme thermal conductivity materials, Nature Mater. 9 (2021) 1188-1202.

DOI: 10.1038/s41563-021-00918-3

Google Scholar

[11] F. Ahmed, A. Munir, M. Saqib, M. Anis-ur-Rehman, Introducing rare earth dopants for controlled conductivity in thermoelectric cobaltites, Journal of Supercond. and Novel Mag. 28(3) (2015) 961-964.

DOI: 10.1007/s10948-014-2735-5

Google Scholar

[12] Z. Li, and F. Cheng, C3Al: A tunable bandgap semiconductor with high electron mobility and negative Poisson's ratio, Phys. E: Low-dimensional Systems and Nanostructures 138 (2022) 115082.

DOI: 10.1016/j.physe.2021.115082

Google Scholar

[13] X. Zhang, S. Li, B. Zou, P. Xu, Y. Song, Y. Wang, G. Tang, and S. Yang, Significant Enhancement in Thermoelectric Properties of half-Heusler Compound TiNiSn by Grain Boundary Engineering, J. Alloys and Comp. (2022) 163686.

DOI: 10.1016/j.jallcom.2022.163686

Google Scholar

[14] P. Nayak, S. K. Nayak, and B. Satpathy, Structural, electro-chemical and conduction mechanism in spinel NiFe2O4/NFO supercapacitor electrode material, Mater. Sc. in Semiconductor Proces. 143 (2022) 106543.

DOI: 10.1016/j.mssp.2022.106543

Google Scholar

[15] C. Gayner, R. Sharma, I. Malik, M. Kumar, S. Singh, K. Kumar, J. Tahalyani, Enhanced Thermoelectric Performance of PbSe-graphene Nanocomposite Manufactured With Acoustic Cavitation Induced Defects, Nano Energy (2022) 106943.

DOI: 10.1016/j.nanoen.2022.106943

Google Scholar

[16] H. Namiki, M. Kobayashi, K. Nagata, Y. Saito, N. Tachibana, and Y. Ota, Relationship between the density of states effective mass and carrier concentration of thermoelectric phosphide Ag6Ge10P12 with strong mechanical robustness, Mater. Today Sustain. 18 (2022) 100116.

DOI: 10.1016/j.mtsust.2022.100116

Google Scholar

[17] D. Singh, and R. Ahuja, Dimensionality effects in high‐performance thermoelectric materials: Computational and experimental progress in energy harvesting applications, Wiley Interdisciplinary Reviews: Comput. Mol. Sc. 1 (2022) 1547.

DOI: 10.1002/wcms.1547

Google Scholar

[18] A. Urbaniak, A. Czudek, J. Dagar, and E. L. Unger, Capacitance spectroscopy of thin-film formamidinium lead iodide based perovskite solar cells, Solar Energy Mater. and Solar Cells 238 (2022) 111618.

DOI: 10.1016/j.solmat.2022.111618

Google Scholar

[19] Z. Xie, K. Feng, Y. Xiong, X. Chen, Y. Liang, K. Abid, and L. Xu, A High Seebeck Voltage Thermoelectric Module with P‐type and N‐type MAPbI3 Perovskite Single Crystals, Adv. Electr. Mater.  3 (2021) 2001003.

DOI: 10.1002/aelm.202001003

Google Scholar

[20] C. Lin, Y. Huang, M. Usman, W. Chao, W. Lin, T. Luo, W. Whang, C. Chen, and K. Lu., Zr-MOF/polyaniline composite films with exceptional seebeck coefficient for thermoelectric material applications, ACS app. Mater. & interfaces 3 (2018) 3400-3406.

DOI: 10.1021/acsami.8b17308

Google Scholar

[21] C. Gong, Y. Zhang, Y. Chen, J. Hu, J. Gou, M. Qin, and F. Gao., Fabrication and thermoelectric properties of Ca-Co-O ceramics with negative Seebeck coefficient, Results in Phy. 9 (2018) 1233-1238.

DOI: 10.1016/j.rinp.2018.04.044

Google Scholar

[22] K. Timbs, M. Khatamifar, E. Antunes, and W, Lin, Experimental study on the heat dissipation performance of straight and oblique fin heat sinks made of thermal conductive composite polymers, Therm. Sc. and Engg. Progress 22 (2021) 100848.

DOI: 10.1016/j.tsep.2021.100848

Google Scholar

[23] C. Ma, H. Du, J. Liu, X. Du, and D. Feng, Charge compensation mechanisms of BaTiO3 ceramics co-doped with La2O3 and Bi2O3, Ceram. Int. 4 (2022) 5428-5433.

DOI: 10.1016/j.ceramint.2021.11.086

Google Scholar

[24] Y. Zhou, Y. Pan, Z. Yuan, B. Li, S. Wang, X. Yin, Y. Xie, Effective approaches to produce high performance single-walled carbon nanotubes/platinum based hybrid films by inserting thermoelectric material with high seebeck coefficient, J. Power Sources 511 (2021) 230454.

DOI: 10.1016/j.jpowsour.2021.230454

Google Scholar