Fracture Surface Analysis, Physical, Optical and Dielectric Properties of Bismuth-Based Glass Doped with Potassium Chromate

Article Preview

Abstract:

Bismuth glasses have been prepared from a commercial-grade chemical glass mixture doped with potassium chromate in different contents. They have been melted at 1250 °C for 4 h, quenched in a metal plate, and annealed at 500 °C for 20 min. The surface morphology of glass samples has been examined using scanning electron microscopy (SEM). The dielectric properties have been investigated. UV-Vis-NIR absorption has been analyzed. The results show the growth of microcrystal precipitated in the glass matrix, and colors of glass change from colorless to green and opaque with the increasing content of potassium chromate. The density of glass decreases with the increasing content of potassium chromate. The UV-Vis spectra show strong absorption of UV. The chromium-doped glasses not only absorb the UV but also the violet and/or blue lights which depend on the chromium contents.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1067)

Pages:

233-237

Citation:

Online since:

August 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Dutchaneephet J, Dararutana P and Sirikulrat N 2017 Chiang Mai J. Sci. 44 1083.

Google Scholar

[2] Ramadan R M, Abdelghany A M and ElBatal H A 2018 Silicon 10 891.

Google Scholar

[3] Dutchaneephet J, Limpichaipanit A and Ngamjarurojana 2018 Materials Letters 229 174.

Google Scholar

[4] Sreedhar I, Agawal B, Goyal P and Singh S A 2019 Journal of Electroanalytical Chemistry 848 113315.

Google Scholar

[5] Slibi D A, Hassan M A, Abd El-Fattah Z M, Atallah M, El-Sherbiny M A and Farouk M 2021 Opt Quant Electron 53, 499.

DOI: 10.1007/s11082-021-03147-9

Google Scholar

[6] Elalaily N A, Abou-Hussien E M and Saad E A 2016 Radiation Effects and Defects in Solids 171 840.

DOI: 10.1080/10420150.2016.1250093

Google Scholar

[7] Narendrudu T, Suresh S, Chinna Ram G, Veeraiah N and Krishna Rao D 2017 J. Lumin. 183 17.

DOI: 10.1016/j.jlumin.2016.11.005

Google Scholar

[8] Babkina A N, Zyryanava K S, Agafonova D A, Nuryev R K, Kolobkova E V and Ignatiev A I 2019 Journal of Physics: Conference Series 1400 066002.

DOI: 10.1088/1742-6596/1400/6/066002

Google Scholar

[9] Araujo C.M, Mikhail H.D, Guimaeaes E.V, Rastrello L.R, Cana N.F, Silva N.F, Dantas N.O. and Silva R S 2020 Materials Chemistry and Physics 241 122323.

DOI: 10.1016/j.matchemphys.2019.122323

Google Scholar

[10] Ismail A I, Samir A, Ahmad F, Soliman L I and Abdelghany 2021 Journal of Non-Crystalline Solids 565, 120743.

DOI: 10.1016/j.jnoncrysol.2021.120743

Google Scholar

[11] Haritha L, Sekhar K C, Nagaraju R, Ramadevudu G, Sathe V G and Shareefuddin Md 2019 Chin.Phys.B 28 038101.

DOI: 10.1088/1674-1056/28/3/038101

Google Scholar

[12] Sallam O I, Ezz-Eldin F M and Elalaily N A 2020 Optical Quantum Electronics 52 204.

Google Scholar

[13] Back M, Trave E, Ueda J and Tanabe S 2016 Chem.Mater. 28 8347.

Google Scholar

[14] Rao P S, Babu P R, Vijay R, Narendrudu T, Veeraiah N and Rao D K 2014 Materials Research Bulletin 57 58.

DOI: 10.1016/j.materresbull.2014.05.030

Google Scholar

[15] Kumar G R and Rao M C 2019 Optik 181 721.

Google Scholar

[16] Zaki Ewiss M A 2020 IOSR Journal of Applied Physics 12 11.

Google Scholar