[1]
K. Zhao, S. Li, M. Huang, X. Shi, G. Zheng, C. Liu, K. Dai, C. Shen, R. Yin, J.Z. Guo, Remarkably anisotropic conductive MWCNTs/polypropylene nanocomposites with alternating microlayers, Chem. Eng. J. 358 (2019) 924–935. https://doi.org/https://doi.org/10.1016/j.cej.2018.10.078.
DOI: 10.1016/j.cej.2018.10.078
Google Scholar
[2]
M. Nisar, M. da G. Sebag Bernd, L.C.P. da Silva Filho, J. Geshev, N.R. de Souza Basso, G. Barrera Galland, Polypropylene nanocomposites with electrical and magnetic properties, J. Appl. Polym. Sci. 135 (2018) 46820.
DOI: 10.1002/app.46820
Google Scholar
[3]
H. Assaedi, T. Alomayri, C.R. Kaze, B.B. Jindal, S. Subaer, F. Shaikh, S. Alraddadi, Characterization and properties of geopolymer nanocomposites with different contents of nano-CaCO3, Constr. Build. Mater. 252 (2020) 119137. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2020.119137.
DOI: 10.1016/j.conbuildmat.2020.119137
Google Scholar
[4]
H. Mao, B. He, W. Guo, L. Hua, Q. Yang, Effects of Nano-CaCO3 Content on the Crystallization, Mechanical Properties, and Cell Structure of PP Nanocomposites in Microcellular Injection Molding, Polym. 10 (2018). https://doi.org/10.3390/polym10101160.
DOI: 10.3390/polym10101160
Google Scholar
[5]
S. Sahebian, S.M. Zebarjad, S.A. Sajjadi, Z. Sherafat, A. Lazzeri, Effect of both uncoated and coated calcium carbonate on fracture toughness of HDPE/CaCO3 nanocomposites, J. Appl. Polym. Sci. 104 (2007) 3688–3694.
DOI: 10.1002/app.25644
Google Scholar
[6]
P.D. Stukhlyak, A. V Buketov, S. V Panin, P.O. Maruschak, K.M. Moroz, M.A. Poltaranin, T. Vukherer, L.A. Kornienko, B.A. Lyukshin, Structural fracture scales in shock-loaded epoxy composites, Phys. Mesomech. 18 (2015) 58–74.
DOI: 10.1134/s1029959915010075
Google Scholar
[7]
A.V. Rane, K. Kanny, V.K. Abitha, S. Thomas, Chapter 5 - Methods for Synthesis of Nanoparticles and Fabrication of Nanocomposites, in: S. Mohan Bhagyaraj, O.S. Oluwafemi, N. Kalarikkal, S.B.T.-S. of I.N. Thomas (Eds.), Micro Nano Technol., Woodhead Publishing, 2018: p.121–139. https://doi.org/https://doi.org/10.1016/B978-0-08-101975-7.00005-1.
DOI: 10.1016/b978-0-08-101975-7.00005-1
Google Scholar
[8]
N.H. Ismail, M. Mustapha, A review of thermoplastic elastomeric nanocomposites for high voltage insulation applications, Polym. Eng. Sci. 58 (2018) E36–E63.
DOI: 10.1002/pen.24822
Google Scholar
[9]
A. Chafidz, C. Tamzysi, L. Kistriyani, R.D. Kusumaningtyas, D. Hartanto, Mechanical properties of PP/clay nanocomposites prepared from masterbatch: Effect of nanoclay loadings and re-processing, 2019. https://doi.org/10.4028/www.scientific.net/KEM.805.59.
DOI: 10.4028/www.scientific.net/kem.805.59
Google Scholar
[10]
K. Prashantha, J. Soulestin, M.-F. Lacrampe, P. Krawczak, G. Dupin, M. Claes, Masterbatch-based multi-walled carbon nanotube filled polypropylene nanocomposites: Assessment of rheological and mechanical properties, Compos. Sci. Technol. 69 (2009) 1756–1763.
DOI: 10.1016/j.compscitech.2008.10.005
Google Scholar
[11]
O. Platnieks, A. Sereda, S. Gaidukovs, V.K. Thakur, A. Barkane, G. Gaidukova, I. Filipova, A. Ogurcovs, V. Fridrihsone, Adding value to poly (butylene succinate) and nanofibrillated cellulose-based sustainable nanocomposites by applying masterbatch process, Ind. Crops Prod. 169 (2021) 113669. https://doi.org/https://doi.org/10.1016/j.indcrop.2021.113669.
DOI: 10.1016/j.indcrop.2021.113669
Google Scholar
[12]
H. Oliver-Ortega, J. Tresserras, F. Julian, M. Alcalà, A. Bala, F.X. Espinach, J.A. Méndez, Nanocomposites materials of PLA Reinforced with nanoclays using a masterbatch technology: A study of the mechanical performance and its sustainability, Polymers (Basel). 13 (2021) 2133.
DOI: 10.3390/polym13132133
Google Scholar
[13]
A. Chafidz, I. Ali, M.E. Ali Mohsin, R. Elleithy, S. Al-Zahrani, Atomic Force Microscopy, thermal, viscoelastic and mechanical properties of HDPE/CaCO 3 nanocomposites, J. Polym. Res. (2012). https://doi.org/10.1007/s10965-012-9860-2.
DOI: 10.1007/s10965-012-9860-2
Google Scholar
[14]
A. Chafidz, A.Y.D. Lestari, L. Setyaningsih, W. Astuti, M. Rizal, Calcium Carbonate Reinforced Polypropylene Nanocomposites: Effect of Nano-Filler Loadings on the Melt Rheological Properties, in: Key Eng. Mater., Trans Tech Publ, 2018: p.168–172.
DOI: 10.4028/www.scientific.net/kem.777.168
Google Scholar
[15]
A. Chafidz, M. Kaavessina, S. Al-Zahrani, M.N. Al-Otaibi, Polypropylene/organoclay nanocomposites prepared using a Laboratory Mixing Extruder (LME): Crystallization, thermal stability and dynamic mechanical properties, J. Polym. Res. (2014). https://doi.org/10.1007/s10965-014-0483-7.
DOI: 10.1007/s10965-014-0483-7
Google Scholar