Polypropylene/CaCO3 Nanocomposites Fabricated Using Masterbatch: Effect of Nano-CaCO3 Loadings and Re-Processing on the Melting Properties

Article Preview

Abstract:

Polypropylene filled calcium carbonate (CaCO3) nanocomposites were fabricated by employing melt blending/compounding method using masterbatch. To investigate the efffect of reprocessing on the melting properties of PP/CaCO3 nanocomposites, the melt compounding process was conducted twice (two cycles). The effect of nano-CaCO3 loadings (i.e. 5, 10 and 15 wt%) on the melting properties of PP/CaCO3 nanocomposites were also studied. The meling properties of the nanocomposites were analyzed by using a DSC (Differential Scanning Calorimetry). Additionally, the nanocomposites samples were also analyzed by an SEM (Scanning Electron Microscopy). The SEM analysis results revealed that at higher nano-CaCO3 loading (i.e. 15 wt%), the nano-CaCO3 particles in the 2nd cycle were more well distributed/dispersed in the polypropylene matrix as compared to the 1st cycle. Whereas, the DSC test results showed that the crystallinity of the nanocomposites samples were similar to that of neat PP for the 1st cycle of melt blending process, which was about 41%. In the other hand, for the 2nd cycle, the crystallinity of the samples slightly increased wtih increasing nano-CaCO3 loadings, which were about 39.6; 43; 44% for nano-CaCO3 loadings of 0, 5, 10 wt%, respectively. Nevertheless, at the highest nano-CaCO3 loadings (i.e. 15 wt%), the crystallinity of the nanocomposites (i.e. NCC-15-II) decreased again and lower than that of neat PP, which was about 37.7%.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1067)

Pages:

73-78

Citation:

Online since:

August 2022

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Zhao, S. Li, M. Huang, X. Shi, G. Zheng, C. Liu, K. Dai, C. Shen, R. Yin, J.Z. Guo, Remarkably anisotropic conductive MWCNTs/polypropylene nanocomposites with alternating microlayers, Chem. Eng. J. 358 (2019) 924–935. https://doi.org/https://doi.org/10.1016/j.cej.2018.10.078.

DOI: 10.1016/j.cej.2018.10.078

Google Scholar

[2] M. Nisar, M. da G. Sebag Bernd, L.C.P. da Silva Filho, J. Geshev, N.R. de Souza Basso, G. Barrera Galland, Polypropylene nanocomposites with electrical and magnetic properties, J. Appl. Polym. Sci. 135 (2018) 46820.

DOI: 10.1002/app.46820

Google Scholar

[3] H. Assaedi, T. Alomayri, C.R. Kaze, B.B. Jindal, S. Subaer, F. Shaikh, S. Alraddadi, Characterization and properties of geopolymer nanocomposites with different contents of nano-CaCO3, Constr. Build. Mater. 252 (2020) 119137. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2020.119137.

DOI: 10.1016/j.conbuildmat.2020.119137

Google Scholar

[4] H. Mao, B. He, W. Guo, L. Hua, Q. Yang, Effects of Nano-CaCO3 Content on the Crystallization, Mechanical Properties, and Cell Structure of PP Nanocomposites in Microcellular Injection Molding, Polym. 10 (2018). https://doi.org/10.3390/polym10101160.

DOI: 10.3390/polym10101160

Google Scholar

[5] S. Sahebian, S.M. Zebarjad, S.A. Sajjadi, Z. Sherafat, A. Lazzeri, Effect of both uncoated and coated calcium carbonate on fracture toughness of HDPE/CaCO3 nanocomposites, J. Appl. Polym. Sci. 104 (2007) 3688–3694.

DOI: 10.1002/app.25644

Google Scholar

[6] P.D. Stukhlyak, A. V Buketov, S. V Panin, P.O. Maruschak, K.M. Moroz, M.A. Poltaranin, T. Vukherer, L.A. Kornienko, B.A. Lyukshin, Structural fracture scales in shock-loaded epoxy composites, Phys. Mesomech. 18 (2015) 58–74.

DOI: 10.1134/s1029959915010075

Google Scholar

[7] A.V. Rane, K. Kanny, V.K. Abitha, S. Thomas, Chapter 5 - Methods for Synthesis of Nanoparticles and Fabrication of Nanocomposites, in: S. Mohan Bhagyaraj, O.S. Oluwafemi, N. Kalarikkal, S.B.T.-S. of I.N. Thomas (Eds.), Micro Nano Technol., Woodhead Publishing, 2018: p.121–139. https://doi.org/https://doi.org/10.1016/B978-0-08-101975-7.00005-1.

DOI: 10.1016/b978-0-08-101975-7.00005-1

Google Scholar

[8] N.H. Ismail, M. Mustapha, A review of thermoplastic elastomeric nanocomposites for high voltage insulation applications, Polym. Eng. Sci. 58 (2018) E36–E63.

DOI: 10.1002/pen.24822

Google Scholar

[9] A. Chafidz, C. Tamzysi, L. Kistriyani, R.D. Kusumaningtyas, D. Hartanto, Mechanical properties of PP/clay nanocomposites prepared from masterbatch: Effect of nanoclay loadings and re-processing, 2019. https://doi.org/10.4028/www.scientific.net/KEM.805.59.

DOI: 10.4028/www.scientific.net/kem.805.59

Google Scholar

[10] K. Prashantha, J. Soulestin, M.-F. Lacrampe, P. Krawczak, G. Dupin, M. Claes, Masterbatch-based multi-walled carbon nanotube filled polypropylene nanocomposites: Assessment of rheological and mechanical properties, Compos. Sci. Technol. 69 (2009) 1756–1763.

DOI: 10.1016/j.compscitech.2008.10.005

Google Scholar

[11] O. Platnieks, A. Sereda, S. Gaidukovs, V.K. Thakur, A. Barkane, G. Gaidukova, I. Filipova, A. Ogurcovs, V. Fridrihsone, Adding value to poly (butylene succinate) and nanofibrillated cellulose-based sustainable nanocomposites by applying masterbatch process, Ind. Crops Prod. 169 (2021) 113669. https://doi.org/https://doi.org/10.1016/j.indcrop.2021.113669.

DOI: 10.1016/j.indcrop.2021.113669

Google Scholar

[12] H. Oliver-Ortega, J. Tresserras, F. Julian, M. Alcalà, A. Bala, F.X. Espinach, J.A. Méndez, Nanocomposites materials of PLA Reinforced with nanoclays using a masterbatch technology: A study of the mechanical performance and its sustainability, Polymers (Basel). 13 (2021) 2133.

DOI: 10.3390/polym13132133

Google Scholar

[13] A. Chafidz, I. Ali, M.E. Ali Mohsin, R. Elleithy, S. Al-Zahrani, Atomic Force Microscopy, thermal, viscoelastic and mechanical properties of HDPE/CaCO 3 nanocomposites, J. Polym. Res. (2012). https://doi.org/10.1007/s10965-012-9860-2.

DOI: 10.1007/s10965-012-9860-2

Google Scholar

[14] A. Chafidz, A.Y.D. Lestari, L. Setyaningsih, W. Astuti, M. Rizal, Calcium Carbonate Reinforced Polypropylene Nanocomposites: Effect of Nano-Filler Loadings on the Melt Rheological Properties, in: Key Eng. Mater., Trans Tech Publ, 2018: p.168–172.

DOI: 10.4028/www.scientific.net/kem.777.168

Google Scholar

[15] A. Chafidz, M. Kaavessina, S. Al-Zahrani, M.N. Al-Otaibi, Polypropylene/organoclay nanocomposites prepared using a Laboratory Mixing Extruder (LME): Crystallization, thermal stability and dynamic mechanical properties, J. Polym. Res. (2014). https://doi.org/10.1007/s10965-014-0483-7.

DOI: 10.1007/s10965-014-0483-7

Google Scholar