[1]
M. A. Zavareh, A.A.D. Sarhan, M. A. Roudan, P. A. Zavareh: TiC–TiB2 composites: A review of processing, properties and applications. (IJIRSE) International Journal of Innovative Research in Science & Engineering ISSN (Online) 2347-3207.
Google Scholar
[2]
Ch. Yang, H. Guo , D. Mo , Sh. Qu , X. Li , W. Zhang and L. Zhang: Bulk TiB2-Based Ceramic Composites with Improved Mechanical Property Using Fe–Ni–Ti–Al as a Sintering Aid. Materials 204, 7, 705-77.
DOI: 10.3390/ma7107105
Google Scholar
[3]
M. Khodaei, O. Yaghobizadeh, H. R. Baharvandi, A. Dashti: Effects of different sintering methods on the properties of SiC-TiC, SiC-TiB2 composites. International Journal of Refractory Metals & Hard Materials 70 (2018) 9–3.
DOI: 10.1016/j.ijrmhm.2017.09.005
Google Scholar
[4]
M. Fattahi, Y. Pazhouhanfar, S. A. Delbari, Sh. Shaddel, A. S. Namini, M. Sh. Asl: Influence of TiB2 content on the properties of TiC–SiCw composites. Ceramics International 46 (2020) 7403–742.
DOI: 10.1016/j.ceramint.2019.11.236
Google Scholar
[5]
C.L. Cramer, J. W. McMurray, M. J. Lance, R.A. Lowden: Reaction-bond composite synthesis of SiC-TiB2 by spark plasma sintering/ field-assisted sintering technology (SPS/FAST). Journal of the European Ceramic Society 40 (2020) 988–995.
DOI: 10.1016/j.jeurceramsoc.2019.11.061
Google Scholar
[6]
Zh. Zhang, Ch. Xu, X. Du, Z. Li, J. Wang, W. Xing, Y. Sheng, W. Wang, Zh. Fu: Synthesis mechanism and mechanical properties of TiB2–SiC composites fabricated with the B4C–TiC–Si system by reactive hot pressing. Journal of Alloys and Compounds 69 (205) 26–30.
DOI: 10.1016/j.jallcom.2014.09.030
Google Scholar
[7]
S. Gowthaman, T. Jagadeesha: Influence of temperature and strain rate on the characteristics of FeNi precipitate through molecular dynamics simulation. Materials Today: Proceedings 46 (202) 26–264.
DOI: 10.1016/j.matpr.2021.02.074
Google Scholar
[8]
M.B. Shongwe, M.M. Ramakokovhu, S. Diouf, M.O. Durowoju, B.A. Obadele, R. Sule, M.L. Lethabane, P.A. Olubambi: Effect of starting powder particle size and heating rate on spark plasma sintering of Fe-Ni alloys. Journal of Alloys and Compounds 678 (206) 24e248.
DOI: 10.1016/j.jallcom.2016.03.270
Google Scholar
[9]
Y. Garip, N. Ergin, and O. Ozdemir: Resistance sintering of CoCrFeNiAlx (x = 0.7, 0.85,) high entropy alloys: Microstructural characterization, oxidation and corrosion properties. Journal of Alloys and Compounds. Volume 877, 5 October 202, 6080.
DOI: 10.1016/j.jallcom.2021.160180
Google Scholar
[10]
J.b Kübarsepp, K. Juhani: Cermets with Fe-alloy binder. A review. International Journal of Refractory Metals and Hard Materials 92( 2020), 05290.
DOI: 10.1016/j.ijrmhm.2020.105290
Google Scholar
[11]
N. Wu, F.Xue, Q. Yang, H. Yang, J. Ruan: Microstructure and mechanical properties of TiB2-based composites with high volume fraction of Fe-Ni additives prepared by vacuum pressureless sintering. Ceramics International 43 (207) 394–40.
DOI: 10.1016/j.ceramint.2016.10.100
Google Scholar
[12]
K. Cymerman, D. Oleszak, M. Rosinski, A. Michalski: Structure and mechanical properties of TiB2/TiC – Ni composites fabricated by pulse plasma sintering method. Advanced Powder Technology 29 (208) 795–803.
DOI: 10.1016/j.apt.2018.04.015
Google Scholar
[13]
Y. Wang, M.Yao, Zh. Hua, H. Li, J. Ouyang, L. Chen, S. Huo, Y. Zhou: Microstructure and mechanical properties of TiB2-40 wt% TiC composites: Effects of adding a low-temperature hold prior to sintering at high temperatures. Ceramics International 44 (208) 23297–23300.
DOI: 10.1016/j.ceramint.2018.09.048
Google Scholar
[14]
N.S. Karthiselva, B.S. Murty, Srinivasa R. Bakshi: Low temperature synthesis of dense TiB2 compacts by reaction spark plasma sintering. Int. Journal of Refractory Metals and Hard Materials 48 (205) 20–20.
DOI: 10.1016/j.ijrmhm.2014.09.015
Google Scholar
[15]
M. S. Heydari, H.R. Baharvandi: Effect of different additives on the sintering ability and the properties of B4C–TiB2 composites. Int. Journal of Refractory Metals and Hard Materials 5 (205) 6–69.
DOI: 10.1016/j.ijrmhm.2015.02.014
Google Scholar
[16]
Sh. Wanga, L. Li, Sh. Yan, Y. Deng, Sh. Gao, P.Xing: Preparing B4C-SiC-TiB2 composites via reactive pressureless sintering with B4C and TiSi2 as raw materials. J MATER RES TECHNOL. 2020; 9(4):8685–8696.
DOI: 10.1016/j.jmrt.2020.05.124
Google Scholar
[17]
Q.C. Jiang, B.X. Ma, H.Y. Wang, Y. Wang, and Y.P. Dong: Fabrication of steel matrix composites locally reinforced with in situ TiB2–TiC particulates using self-propagating high-temperature synthesis reaction of Al–Ti–B4C system during casting. Composites Part A: Applied Science and Manufacturing,Volume 37, Issue 1,2006, Pages 133-138.
DOI: 10.1016/j.compositesa.2005.03.011
Google Scholar
[18]
B. Zou, P.Shen, Q.Jiang: Dependence of the SHS reaction behavior and product on B4C particle size in Al–Ti–B4C and Al–TiO2–B4C systems. Materials Research Bulletin. Volume 44, Issue 3, 5 March 2009, Pages 499-504.
DOI: 10.1016/j.materresbull.2008.08.001
Google Scholar
[19]
Q.C. Jiang, B.X.Ma, H.Y. Wang, Y.Wang Y.P. Dong: Fabrication of steel matrix composites locally reinforced with in situ TiB2–TiC particulates using self-propagating high-temperature synthesis reaction of Al–Ti–B4C system during casting. Composites Part A: Applied Science and Manufacturing. Volume 37, Issue , January 2006, Pages 33-38.
DOI: 10.1016/j.compositesa.2005.03.011
Google Scholar
[20]
H.Y. Wang, L.Huang, Q.C. Jiang: In situ synthesis of TiB2–TiC particulates locally reinforced medium carbon steel–matrix composites via the SHS reaction of Ni–Ti–B4C system during casting. Materials Science and Engineering: A. Volume 407, Issues 1–2, 25 October 2005, Pages 98-104.
DOI: 10.1016/j.msea.2005.06.068
Google Scholar
[21]
P. V. Yasniy, P. Maruschak, V. B. Hlad'o, D. Ya. Baran: Correlation of the microdislocation parameters with the hardness of plastically deformed heat-resistant steels. Mater Sci 44, 194 (2008).
DOI: 10.1007/s11003-008-9077-z
Google Scholar