Ammonium Hydroxide-Assisted Growth of Large-Scale Single-Crystalline Molybdenum Disulfide

Article Preview

Abstract:

Controllable, massive synthesis of low-dimensional materials is one of the important cornerstones for the development of new functional devices oriented to high-tech industries, and the key to realize the broad application prospects in the quantum realm. How to synthesize high-quality low-dimensional materials for the next-generation high-performance devices has been regarded as a significant research direction in the field of functional material preparation technology. Here, we developed a convenient method via a solution-assisted thin-film precursor to replace the conventional solid-state powder precursor by taking advantage of the soluble nature of molybdenum trioxide in ammonium hydroxide, which can remarkably reduce the supersaturation state of vapor reactants and thus reduce the nucleation density, beneficial for the growth of large-scale single-crystalline molybdenum disulfide monolayers. The effect of the precursor concentration on the growth process has been systematically investigated. High-resolution transmission electron microscopy and temperature-dependent optical characterizations have been performed to examine the crystal quality of the ammonium hydroxide-assisted synthesized samples.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1067)

Pages:

121-129

Citation:

Online since:

August 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Lembke, D.; Bertolazzi, S. and Kis, A., Single-layer MoS2 electronics, Acc. Chem. Res., 48 (2015), 100-110.

DOI: 10.1021/ar500274q

Google Scholar

[2] Du, J.-y.; Ge, C.; Riahi, H.; Guo, E.-j.; He, M.; Wang, C.; Yang, G.-z. and Jin, K.-j., Dual-gated MoS2 transistors for synaptic and programmable logic functions, Adv. Electron. Mater., 6 (2020), 1901408.

DOI: 10.1002/aelm.201901408

Google Scholar

[3] Liu, C.; Zou, X.; Wu, M.-C.; Wang, Y.; Lv, Y.; Duan, X.; Zhang, S.; Liu, X.; Wu, W.-W.; Hu, W.; Fan, Z. and Liao, L., Polarization-resolved broadband MoS2/black phosphorus/MoS2 optoelectronic memory with ultralong retention time and ultrahigh switching ratio, Adv. Funct. Mater., 31 (2021), 2100781.

DOI: 10.1002/adfm.202100781

Google Scholar

[4] Wang, X.; Zheng, B.; Yi, J.; Liu, H.; Sun, X.; Zhu, C.; Liu, Y.; Fang, L.; Li, D. and Pan, A., Controlled growth of SnSe/MoS2 vertical p-n heterojunction for optoelectronic applications, Nano Futures, 5 (2021), 015002.

DOI: 10.1088/2399-1984/abd53a

Google Scholar

[5] Wan, Y.; Xiao, J.; Li, J.; Fang, X.; Zhang, K.; Fu, L.; Li, P.; Song, Z.; Zhang, H.; Wang, Y.; Zhao, M.; Lu, J.; Tang, N.; Ran, G.; Zhang, X.; Ye, Y. and Dai, L., Epitaxial single-layer MoS2 on GaN with enhanced valley helicity, Adv. Mater., 30 (2018), 1703888.

DOI: 10.1002/adma.201703888

Google Scholar

[6] Wan, Y.; Cheng, X.; Li, Y.; Wang, Y.; Du, Y.; Zhao, Y.; Peng, B.; Dai, L. and Kan, E., Manipulating the Raman scattering rotation via magnetic field in an MoS2 monolayer, RSC Adv., 11 (2021), 4035-4041.

DOI: 10.1039/d0ra09350e

Google Scholar

[7] Liu, T. and Liu, Z., 2D MoS2 nanostructures for biomedical applications, Adv. Healthcare Mater., 7 (2018), 1701158.

Google Scholar

[8] Liu, M.; Zhu, H.; Wang, Y.; Sevencan, C. and Li, B. L., Functionalized MoS2-based nanomaterials for cancer phototherapy and other biomedical applications, ACS Mater. Lett., 3 (2021), 462-496.

DOI: 10.1021/acsmaterialslett.1c00073

Google Scholar

[9] Wan, Y.; Zhang, Z.; Xu, X.; Zhang, Z.; Li, P.; Fang, X.; Zhang, K.; Yuan, K.; Liu, K.; Ran, G.; Li, Y.; Ye, Y. and Dai, L., Engineering active edge sites of fractal-shaped single-layer MoS2 catalysts for high-efficiency hydrogen evolution, Nano Energy, 51 (2018), 786-792.

DOI: 10.1016/j.nanoen.2018.02.027

Google Scholar

[10] Chu, K.; Liu, Y.-p.; Li, Y.-b.; Guo, Y.-l. and Tian, Y., Two-dimensional (2D)/2D interface engineering of a MoS2/C3N4 heterostructure for promoted electrocatalytic nitrogen fixation, ACS Appl. Mater. Interfaces, 12 (2020), 7081-7090.

DOI: 10.1021/acsami.9b18263

Google Scholar

[11] Pierson, H. O., Handbook of chemical vapor deposition: principles, technology and applications, William Andrew, New York, (1999).

Google Scholar

[12] Park, J.-H. and Sudarshan, T., Chemical vapor deposition, USA ASM international, Russell Township, (2001).

Google Scholar

[13] Shi, Y.; Li, H. and Li, L.-J., Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques, Chem. Soc. Rev., 44 (2015), 2744-2756.

DOI: 10.1039/c4cs00256c

Google Scholar

[14] Choudhary, N.; Park, J.; Hwang, J. Y. and Choi, W., Growth of large-scale and thickness-modulated MoS2 nanosheets, ACS Appl. Mater. Interfaces, 6 (2014), 21215-21222.

DOI: 10.1021/am506198b

Google Scholar

[15] Xu, X.; Das, G.; He, X.; Hedhili, M. N.; Fabrizio, E. D.; Zhang, X. and Alshareef, H. N., High-performance monolayer MoS2 films at the wafer scale by two-step growth, Adv. Funct. Mater., 29 (2019), 1901070.

DOI: 10.1002/adfm.201901070

Google Scholar

[16] Ling, X.; Lee, Y.-H.; Lin, Y.; Fang, W.; Yu, L.; Dresselhaus, M. S. and Kong, J., Role of the seeding promoter in MoS2 growth by chemical vapor deposition, Nano Lett., 14 (2014), 464-472.

DOI: 10.1021/nl4033704

Google Scholar

[17] Wan, Y.; Zhang, H.; Wang, W.; Sheng, B.; Zhang, K.; Wang, Y.; Song, Q.; Mao, N.; Li, Y.; Wang, X.; Zhang, J. and Dai, L., Origin of improved optical quality of monolayer molybdenum disulfide grown on hexagonal boron nitride substrate, Small, 12 (2016), 198-203.

DOI: 10.1002/smll.201502141

Google Scholar

[18] Lee, J.; Pak, S.; Giraud, P.; Lee, Y. W.; Cho, Y.; Hong, J.; Jang, A. R.; Chung, H. S.; Hong, W. K. and Jeong, H. Y., Thermodynamically stable synthesis of large-scale and highly crystalline transition metal dichalcogenide monolayers and their unipolar n-n heterojunction devices, Adv. Mater., 29 (2017), 1702206.

DOI: 10.1002/adma.201702206

Google Scholar

[19] Mak, K. F.; Lee, C.; Hone, J.; Shan, J. and Heinz, T. F., Atomically thin MoS2: a new direct-gap semiconductor, Phys. Rev. Lett., 105 (2010), 136805.

DOI: 10.1103/physrevlett.105.136805

Google Scholar

[20] Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C.-Y.; Galli, G. and Wang, F., Emerging photoluminescence in monolayer MoS2, Nano Lett., 10 (2010), 1271-1275.

DOI: 10.1021/nl903868w

Google Scholar

[21] Eda, G.; Yamaguchi, H.; Voiry, D.; Fujita, T.; Chen, M. and Chhowalla, M., Photoluminescence from chemically exfoliated MoS2, Nano Lett., 11 (2011), 5111-5116.

DOI: 10.1021/nl201874w

Google Scholar