Photocatalytic Performance Test of Sn3O4/TiO2/SiO2 Particles with Adjusted Sn3O4 Deposition under Indoor Environment

Article Preview

Abstract:

Photocatalyst is a material that can not only generate clean energy for the environment but can also be used in various applications such as antibacterial and antifouling properties. In this study, we compared the photocatalytic performance of titanium dioxide under indoor conditions by adjusting the amount of tin oxide attached to it. The amount of tin oxide deposited can be varied by adjusting the hydrothermal synthesis time. Appropriate tin oxide deposition recorded higher performance than excessive tin oxide deposition in both the yeast antimicrobial test and the water-splitting power generation test.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1067)

Pages:

147-152

Citation:

Online since:

August 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Kudo, A., & Miseki, Y. (2009). Heterogeneous photocatalyst materials for water splitting. Chemical Society Reviews, 38(1), 253-278.

DOI: 10.1039/b800489g

Google Scholar

[2] Dhananjay, S. B., Vishwas, G. P., & Anthony, A., B. (2002). Photocatalytic degradation for environmental applications - a review. Journal of Chemical Technology and Biotechnology, 77(1), 102-116.

Google Scholar

[3] Akira, F., & Kenichi, H. (1927). Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 238, 37-38.

Google Scholar

[4] Masahiro M, Hiroshi I, Xiaoqing Q, Huogen Y, Kayano S & Kazuhito H. (2016). Visible-Light-Sensitive Photocatalysts: Nanocluster-Grafted TitaniumDioxide for Indoor Environmental Remediation. J. Phys. Chem. Lett, 7, 75-84.

DOI: 10.1021/acs.jpclett.5b02041.s001

Google Scholar

[5] Di, C., & Jinhua, Y. (2008). Hierarchical WO3 Hollow Shells: Dendrite, Sphere, Dumbbell, and Their Photocatalytic Properties. Advanced Functional Materials, 18(13), 1922 -(1928).

DOI: 10.1002/adfm.200701468

Google Scholar

[6] G. Chen, S. Ji, Y. Sang, S. Chang, Y. Wang, P. Hao, et al. (2015). Synthesis of scaly Sn3O4/TiO2 nanobelt heterostructures for enhanced UV-visible light photocatalytic activity. Nanoscale, 7, 3117-3125.

DOI: 10.1039/c4nr05749j

Google Scholar

[7] Y. He , D. Li , J. Chen , Y. Shao , J. Xian , X. Zheng and P. Wang. (2013). Sn3O4: a novel heterovalent-tin photocatalyst with hierarchical 3D nanostructures under visible light. RSC Adv., 4 , 1266-1269.

DOI: 10.1039/c3ra45743e

Google Scholar

[8] Xiwang, Z., Tong, Z., Jiawei, N., & Darren, D., S. (2009). High-Performance Multifunctional TiO2 Nanowire Ultrafiltration Membrane with a Hierarchical Layer Structure for Water Treatment. Advanced Functional Materials, 19(23), 3731-3736.

DOI: 10.1002/adfm.200901435

Google Scholar

[9] Minmin, G., Liangliang, Z., Wei, L., O., Jing, W., & Ghim, W., H. (2015). Structural design of TiO2-based photocatalyst for H2 production and degradation applications. Catalysis Science & Technology, 5(10), 4703-4726.

Google Scholar

[10] Tim, L., Stuart, L., George, B., & Frank, G. (2012). Mesoporous Hollow Sphere Titanium Dioxide Photocatalysts through Hydrothermal Silica Etching. ACS Applied Materials & Interfaces, 4(11), 6062–6070.

DOI: 10.1021/am3016922

Google Scholar

[11] Jae-Won, L., Sungmin, K., Woo-Sik, K., & Jinsoo, K. (2007). Preparation and characterization of SiO2/TiO2 core-shell particles with controlled shell thickness. Materials Chemistry and Physics, 106(1), 39-44.

DOI: 10.1016/j.matchemphys.2007.05.019

Google Scholar

[12] Suim, S., Sun, H., H., Chanhoi, K., Ju, Y., Y., & Jyongsik, J. (2013). Designed Synthesis of SiO2/TiO2 Core/Shell Structure As Light Scattering Material for Highly Efficient Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 5(11), 4815–4820.

DOI: 10.1021/am400441v

Google Scholar

[13] Akihiro Y, Dang. T. N, & Kozo T. Anti-bacterial test of Sn3O4/TiO2/SiO2 particles with controlled Sn3O4 deposition. IJMSE Journal, (To be published).

DOI: 10.17706/ijmse.2022.10.4.80-87

Google Scholar

[14] Yajun, W., Qisheng, W., Xueying, Z., Fengmei, W., Muhammad, S., & Jun, H. (2013). Visible light driven type II heterostructures and their enhanced photocatalysis properties: a review. Nanoscale, 5(18), 8326-8339.

DOI: 10.1039/c3nr01577g

Google Scholar