[1]
Kudo, A., & Miseki, Y. (2009). Heterogeneous photocatalyst materials for water splitting. Chemical Society Reviews, 38(1), 253-278.
DOI: 10.1039/b800489g
Google Scholar
[2]
Dhananjay, S. B., Vishwas, G. P., & Anthony, A., B. (2002). Photocatalytic degradation for environmental applications - a review. Journal of Chemical Technology and Biotechnology, 77(1), 102-116.
Google Scholar
[3]
Akira, F., & Kenichi, H. (1927). Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 238, 37-38.
Google Scholar
[4]
Masahiro M, Hiroshi I, Xiaoqing Q, Huogen Y, Kayano S & Kazuhito H. (2016). Visible-Light-Sensitive Photocatalysts: Nanocluster-Grafted TitaniumDioxide for Indoor Environmental Remediation. J. Phys. Chem. Lett, 7, 75-84.
DOI: 10.1021/acs.jpclett.5b02041.s001
Google Scholar
[5]
Di, C., & Jinhua, Y. (2008). Hierarchical WO3 Hollow Shells: Dendrite, Sphere, Dumbbell, and Their Photocatalytic Properties. Advanced Functional Materials, 18(13), 1922 -(1928).
DOI: 10.1002/adfm.200701468
Google Scholar
[6]
G. Chen, S. Ji, Y. Sang, S. Chang, Y. Wang, P. Hao, et al. (2015). Synthesis of scaly Sn3O4/TiO2 nanobelt heterostructures for enhanced UV-visible light photocatalytic activity. Nanoscale, 7, 3117-3125.
DOI: 10.1039/c4nr05749j
Google Scholar
[7]
Y. He , D. Li , J. Chen , Y. Shao , J. Xian , X. Zheng and P. Wang. (2013). Sn3O4: a novel heterovalent-tin photocatalyst with hierarchical 3D nanostructures under visible light. RSC Adv., 4 , 1266-1269.
DOI: 10.1039/c3ra45743e
Google Scholar
[8]
Xiwang, Z., Tong, Z., Jiawei, N., & Darren, D., S. (2009). High-Performance Multifunctional TiO2 Nanowire Ultrafiltration Membrane with a Hierarchical Layer Structure for Water Treatment. Advanced Functional Materials, 19(23), 3731-3736.
DOI: 10.1002/adfm.200901435
Google Scholar
[9]
Minmin, G., Liangliang, Z., Wei, L., O., Jing, W., & Ghim, W., H. (2015). Structural design of TiO2-based photocatalyst for H2 production and degradation applications. Catalysis Science & Technology, 5(10), 4703-4726.
Google Scholar
[10]
Tim, L., Stuart, L., George, B., & Frank, G. (2012). Mesoporous Hollow Sphere Titanium Dioxide Photocatalysts through Hydrothermal Silica Etching. ACS Applied Materials & Interfaces, 4(11), 6062–6070.
DOI: 10.1021/am3016922
Google Scholar
[11]
Jae-Won, L., Sungmin, K., Woo-Sik, K., & Jinsoo, K. (2007). Preparation and characterization of SiO2/TiO2 core-shell particles with controlled shell thickness. Materials Chemistry and Physics, 106(1), 39-44.
DOI: 10.1016/j.matchemphys.2007.05.019
Google Scholar
[12]
Suim, S., Sun, H., H., Chanhoi, K., Ju, Y., Y., & Jyongsik, J. (2013). Designed Synthesis of SiO2/TiO2 Core/Shell Structure As Light Scattering Material for Highly Efficient Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 5(11), 4815–4820.
DOI: 10.1021/am400441v
Google Scholar
[13]
Akihiro Y, Dang. T. N, & Kozo T. Anti-bacterial test of Sn3O4/TiO2/SiO2 particles with controlled Sn3O4 deposition. IJMSE Journal, (To be published).
DOI: 10.17706/ijmse.2022.10.4.80-87
Google Scholar
[14]
Yajun, W., Qisheng, W., Xueying, Z., Fengmei, W., Muhammad, S., & Jun, H. (2013). Visible light driven type II heterostructures and their enhanced photocatalysis properties: a review. Nanoscale, 5(18), 8326-8339.
DOI: 10.1039/c3nr01577g
Google Scholar