Factorial Analysis of Xylanase and Cellulase Production from Pineapple Peel Waste

Article Preview

Abstract:

Pineapple wastes (skin, core and crown) are mainly composed of carbohydrates (cellulose, hemicellulose, and lignin). Non-starch polysaccharides (NSP) in feed are indigestible by the endogenous enzymes in poultry. Thus, exogenous enzymes (xylanase and cellulase) are required to overcome this problem. Due to high fiber content, pineapple wastes are unsuitable for animal feed. However, the fermented waste juice could be used to produce enzymes. The objective of this study is to produce xylanase and cellulase from the fermentation of pineapple waste using Lactobacillus casei (L. casei) bacteria inoculated from probiotic drink. The fermentation was performed using different screening parameters (incubation time, temperature, pH value and substrate concentration) according to Two-Level Full Factorial Design (FFD) by Design Expert. From this study, the incubation temperature and substrate concentration had the highest influence on the xylanase activity (39.82 U/mL) while the fermentation time and substrate concentration mostly affected the cellulase activity (8.05 U/mL). Meanwhile, the pH had the least influence on both enzyme activities. The pineapple waste at its best fermentation parameters not only offers an economical way of high enzyme production but also alleviates the agricultural waste disposal issue. Further optimization of the pineapple waste fermentation parameters is required though to maximize enzyme production.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1069)

Pages:

241-253

Citation:

Online since:

August 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Mohd Ali, N. Hashim, S. Abd Aziz, and O. Lasekan, Pineapple (Ananas comosus): A comprehensive review of nutritional values, volatile compounds, health benefits, and potential food products,, Food Res. Int., vol. 137, p.109675, Nov. 2020,.

DOI: 10.1016/j.foodres.2020.109675

Google Scholar

[2] S. P. Santoso et al., Atmospheric cold plasma-assisted pineapple peel waste hydrolysate detoxification for the production of bacterial cellulose,, Int. J. Biol. Macromol., vol. 175, p.526–534, Apr. 2021,.

DOI: 10.1016/j.ijbiomac.2021.01.169

Google Scholar

[3] L. Seguí and P. Fito Maupoey, An integrated approach for pineapple waste valorisation. Bioethanol production and bromelain extraction from pineapple residues,, J. Clean. Prod., vol. 172, p.1224–1231, Jan. 2018,.

DOI: 10.1016/j.jclepro.2017.10.284

Google Scholar

[4] C. Stefanello et al., Effects of energy, α-amylase, and β-xylanase on growth performance of broiler chickens,, Anim. Feed Sci. Technol., vol. 225, p.205–212, Mar. 2017,.

DOI: 10.1016/j.anifeedsci.2017.01.019

Google Scholar

[5] A. Raza, S. Bashir, and R. Tabassum, An update on carbohydrases: growth performance and intestinal health of poultry,, Heliyon, vol. 5, no. 4. Elsevier Ltd, Apr. 01, 2019,.

DOI: 10.1016/j.heliyon.2019.e01437

Google Scholar

[6] B. K. Ojha, P. K. Singh, and N. Shrivastava, Enzymes in the animal feed industry,, in Enzymes in Food Biotechnology: Production, Applications, and Future Prospects, Academic Press, 2018, p.93–109.

DOI: 10.1016/b978-0-12-813280-7.00007-4

Google Scholar

[7] Wenger Feeds, Enzymes in Poultry Feed,, 2021. https://www.wengerfeeds.com/enzymes-in-poultry-feed/ (accessed Apr. 15, 2021).

Google Scholar

[8] U. Gadde, W. H. Kim, S. T. Oh, and H. S. Lillehoj, Alternatives to antibiotics for maximizing growth performance and feed efficiency in poultry: a review,, 2021,.

DOI: 10.1017/s1466252316000207

Google Scholar

[9] S. Uzuner and D. Cekmecelioglu, Enzymes in the beverage industry,, in Enzymes in Food Biotechnology: Production, Applications, and Future Prospects, Elsevier, 2018, p.29–43.

DOI: 10.1016/b978-0-12-813280-7.00003-7

Google Scholar

[10] J. Singh, D. Kundu, M. Das, and R. Banerjee, Enzymatic processing of juice from fruits/vegetables: An emerging trend and cutting edge research in food biotechnology,, in Enzymes in Food Biotechnology: Production, Applications, and Future Prospects, Elsevier, 2018, p.419–432.

DOI: 10.1016/b978-0-12-813280-7.00024-4

Google Scholar

[11] P. Fernandes, Enzymatic Processing in the Food Industry,, in Reference Module in Food Science, Elsevier, (2018).

Google Scholar

[12] Y. Heryandi, Adrizal, N. Ningsih, and M. E. Mahata, Carcass characteristics and organ development of broilers fed fermented pineapple peel [Ananas comosus (L.) merr] waste using a local microorganism solution derived from bamboo sprouts,, Int. J. Poult. Sci., vol. 17, no. 5, p.229–233, 2018,.

DOI: 10.3923/ijps.2018.229.233

Google Scholar

[13] U. S. P. Uday et al., Isolation, screening and characterization of a novel extracellular xylanase from Aspergillus niger (KP874102.1) and its application in orange peel hydrolysis,, Int. J. Biol. Macromol., vol. 105, p.401–409, Dec. 2017,.

DOI: 10.1016/j.ijbiomac.2017.07.066

Google Scholar

[14] D. S. Gade, M. V Dhumal, M. G. Nikam, and D. Bhosale, INFLUENCE OF DIFFERENT LEVELS OF XYLANASE ENZYME ON PERFORMANCE, LITTER QUALITY AND ECONOMICS OF BROILER CHICKEN,, 2017. Accessed: Dec. 17, 2020. [Online]. Available: www.tjprc.org.

Google Scholar

[15] M. E. Abd El-Hack, M. Alagawany, V. Laudadio, R. Demauro, and V. Tufarelli, Dietary inclusion of raw faba bean instead of soybean meal and enzyme supplementation in laying hens: Effect on performance and egg quality,, Saudi J. Biol. Sci., vol. 24, no. 2, p.276–285, Feb. 2017,.

DOI: 10.1016/j.sjbs.2015.05.009

Google Scholar

[16] N. A. M. Ridzuan, S. M. Shaarani, Z. I. M. Arshad, N. Masngut, N. Zainol, and J. H. Shariffuddin, Study on enzyme activities in pineapple fruit and pineapple waste to be applied as poultry supplement,, in IOP Conference Series: Materials Science and Engineering, 2020, vol. 991, no. 1,.

DOI: 10.1088/1757-899x/991/1/012064

Google Scholar

[17] Y. Selvanathan and N. Masngut, A statistical study of factors affecting natural biovinegar fermentation from pineapple peel waste,, IOP Conf. Ser. Mater. Sci. Eng., vol. 1092, no. 1, p.012004, 2021,.

DOI: 10.1088/1757-899x/1092/1/012004

Google Scholar

[18] K. Y. Butt, A. Altaf, M. A. Malana, M. I. Ghori, and A. Jamil, Optimal Production of Proteases from Bacillus subtilis Using Submerged Fermentation,, Pakistan J. Life Soc. Sci., vol. 16, no. 1, p.15–19, 2018, Accessed: Dec. 11, 2020. [Online]. Available: www.pjlss.edu.pk.

Google Scholar

[19] N. A. Chohan, G. S. Aruwajoye, Y. Sewsynker-Sukai, and E. B. Gueguim Kana, Valorisation of potato peel wastes for bioethanol production using simultaneous saccharification and fermentation: Process optimization and kinetic assessment,, Renew. Energy, vol. 146, p.1031–1040, Feb. 2020,.

DOI: 10.1016/j.renene.2019.07.042

Google Scholar

[20] M. Irfan, U. Asghar, M. Nadeem, R. Nelofer, and Q. Syed, Optimization of process parameters for xylanase production by Bacillus sp. in submerged fermentation,, J. Radiat. Res. Appl. Sci., vol. 9, no. 2, p.139–147, Apr. 2016,.

DOI: 10.1016/j.jrras.2015.10.008

Google Scholar

[21] S. N. A. Rosli, R. Che Man, and N. Masngut, Factorial experimental design for xylanase production by Bacillus sp. isolated from Malaysia landfill soil,, in IOP Conference Series: Materials Science and Engineering, Mar. 2020, vol. 736, no. 2,.

DOI: 10.1088/1757-899x/736/2/022074

Google Scholar

[22] A. Kumar, The Pharma Innovation Journal 2021; 10(5): 954-961 Utilization of bioactive components present in pineapple waste: A review,, 2021, Accessed: Apr. 15, 2022. [Online]. Available: http://www.thepharmajournal.com.

Google Scholar

[23] D. Kania, R. Yunus, R. Omar, S. Abdul Rashid, and B. Mohamed Jan, Rheological investigation of synthetic-based drilling fluid containing non-ionic surfactant pentaerythritol ester using full factorial design,, Colloids Surfaces A Physicochem. Eng. Asp., vol. 625, p.126700, Sep. 2021,.

DOI: 10.1016/j.colsurfa.2021.126700

Google Scholar

[24] M. M. Abdulredha, S. A. Hussain, and L. C. Abdullah, Optimization of the demulsification of water in oil emulsion via non-ionic surfactant by the response surface methods,, J. Pet. Sci. Eng., vol. 184, no. May 2019, p.106463, 2020,.

DOI: 10.1016/j.petrol.2019.106463

Google Scholar

[25] S. A. Razali, N. Rasit, and C. K. Ooi, Statistical analysis of xylanase production from solid state fermentation of rice husk associated fungus Aspergillus Niger,, in Materials Today: Proceedings, Jan. 2019, vol. 39, p.1082–1087,.

DOI: 10.1016/j.matpr.2020.06.366

Google Scholar

[26] F. S. Ire, I. J. Chima, and V. Ezebuiro, Enhanced xylanase production from UV-mutated Aspergillus niger grown on corn cob and sawdust,, Biocatal. Agric. Biotechnol., vol. 31, p.101869, Jan. 2021,.

DOI: 10.1016/j.bcab.2020.101869

Google Scholar

[27] B. Kalim et al., Modulating the production of xylanase by Bacillus pumilus BS131 through optimization using waste fiber sludge,, Braz. J. Biol., vol. 83, p. e243874, Aug. 2021,.

DOI: 10.1590/1519-6984.243874

Google Scholar

[28] D. Si et al., Production and characterization of functional wheat bran hydrolysate rich in reducing sugars, xylooligosaccharides and phenolic acids,, Biotechnol. Reports, vol. 27, p. e00511, Sep. 2020,.

DOI: 10.1016/j.btre.2020.e00511

Google Scholar

[29] S. Banerjee, A. F. Patti, V. Ranganathan, and A. Arora, Hemicellulose based biorefinery from pineapple peel waste: Xylan extraction and its conversion into xylooligosaccharides,, Food Bioprod. Process., vol. 117, p.38–50, Sep. 2019,.

DOI: 10.1016/j.fbp.2019.06.012

Google Scholar

[30] L. Gelain, L. van der Wielen, W. M. van Gulik, J. Geraldo da Cruz Pradella, and A. Carvalho da Costa, Mathematical modelling for the optimization of cellulase production using glycerol for cell growth and cellulose as the inducer substrate,, Chem. Eng. Sci. X, vol. 8, p.100085, Nov. 2020,.

DOI: 10.1016/j.cesx.2020.100085

Google Scholar

[31] R. N. da Silva, L. F. de A. Melo, and C. L. Luna Finkler, Optimization of the cultivation conditions of Bacillus licheniformis BCLLNF-01 for cellulase production,, Biotechnol. Reports, vol. 29, p. e00599, Mar. 2021,.

DOI: 10.1016/j.btre.2021.e00599

Google Scholar

[32] S. K. Pramanik et al., Fermentation optimization of cellulase production from sugarcane bagasse by Bacillus pseudomycoides and molecular modeling study of cellulase,, Curr. Res. Microb. Sci., vol. 2, p.100013, Dec. 2021,.

DOI: 10.1016/j.crmicr.2020.100013

Google Scholar

[33] S. Boiko, Optimization of the catalytic process and increase of the Irpex lacteus cellulases yield for saccharification,, Bioresour. Technol. Reports, vol. 15, p.100780, Sep. 2021,.

DOI: 10.1016/j.biteb.2021.100780

Google Scholar

[34] S. Poornima, P. Divya, N. Karmegam, V. Karthik, and R. Subbaiya, Aqueous two-phase partitioning and characterization of xylanase produced by Streptomyces geysiriensis from low cost lignocellulosic substrates,, J. Biosci. Bioeng., vol. 130, no. 6, p.571–576, Dec. 2020,.

DOI: 10.1016/j.jbiosc.2020.07.008

Google Scholar

[35] O. C. Amadi et al., Process optimization for simultaneous production of cellulase, xylanase and ligninase by Saccharomyces cerevisiae SCPW 17 under solid state fermentation using Box-Behnken experimental design,, Heliyon, vol. 6, no. 7, p. e04566, Jul. 2020,.

DOI: 10.1016/j.heliyon.2020.e04566

Google Scholar