[1]
M. Mohd Ali, N. Hashim, S. Abd Aziz, and O. Lasekan, Pineapple (Ananas comosus): A comprehensive review of nutritional values, volatile compounds, health benefits, and potential food products,, Food Res. Int., vol. 137, p.109675, Nov. 2020,.
DOI: 10.1016/j.foodres.2020.109675
Google Scholar
[2]
S. P. Santoso et al., Atmospheric cold plasma-assisted pineapple peel waste hydrolysate detoxification for the production of bacterial cellulose,, Int. J. Biol. Macromol., vol. 175, p.526–534, Apr. 2021,.
DOI: 10.1016/j.ijbiomac.2021.01.169
Google Scholar
[3]
L. Seguí and P. Fito Maupoey, An integrated approach for pineapple waste valorisation. Bioethanol production and bromelain extraction from pineapple residues,, J. Clean. Prod., vol. 172, p.1224–1231, Jan. 2018,.
DOI: 10.1016/j.jclepro.2017.10.284
Google Scholar
[4]
C. Stefanello et al., Effects of energy, α-amylase, and β-xylanase on growth performance of broiler chickens,, Anim. Feed Sci. Technol., vol. 225, p.205–212, Mar. 2017,.
DOI: 10.1016/j.anifeedsci.2017.01.019
Google Scholar
[5]
A. Raza, S. Bashir, and R. Tabassum, An update on carbohydrases: growth performance and intestinal health of poultry,, Heliyon, vol. 5, no. 4. Elsevier Ltd, Apr. 01, 2019,.
DOI: 10.1016/j.heliyon.2019.e01437
Google Scholar
[6]
B. K. Ojha, P. K. Singh, and N. Shrivastava, Enzymes in the animal feed industry,, in Enzymes in Food Biotechnology: Production, Applications, and Future Prospects, Academic Press, 2018, p.93–109.
DOI: 10.1016/b978-0-12-813280-7.00007-4
Google Scholar
[7]
Wenger Feeds, Enzymes in Poultry Feed,, 2021. https://www.wengerfeeds.com/enzymes-in-poultry-feed/ (accessed Apr. 15, 2021).
Google Scholar
[8]
U. Gadde, W. H. Kim, S. T. Oh, and H. S. Lillehoj, Alternatives to antibiotics for maximizing growth performance and feed efficiency in poultry: a review,, 2021,.
DOI: 10.1017/s1466252316000207
Google Scholar
[9]
S. Uzuner and D. Cekmecelioglu, Enzymes in the beverage industry,, in Enzymes in Food Biotechnology: Production, Applications, and Future Prospects, Elsevier, 2018, p.29–43.
DOI: 10.1016/b978-0-12-813280-7.00003-7
Google Scholar
[10]
J. Singh, D. Kundu, M. Das, and R. Banerjee, Enzymatic processing of juice from fruits/vegetables: An emerging trend and cutting edge research in food biotechnology,, in Enzymes in Food Biotechnology: Production, Applications, and Future Prospects, Elsevier, 2018, p.419–432.
DOI: 10.1016/b978-0-12-813280-7.00024-4
Google Scholar
[11]
P. Fernandes, Enzymatic Processing in the Food Industry,, in Reference Module in Food Science, Elsevier, (2018).
Google Scholar
[12]
Y. Heryandi, Adrizal, N. Ningsih, and M. E. Mahata, Carcass characteristics and organ development of broilers fed fermented pineapple peel [Ananas comosus (L.) merr] waste using a local microorganism solution derived from bamboo sprouts,, Int. J. Poult. Sci., vol. 17, no. 5, p.229–233, 2018,.
DOI: 10.3923/ijps.2018.229.233
Google Scholar
[13]
U. S. P. Uday et al., Isolation, screening and characterization of a novel extracellular xylanase from Aspergillus niger (KP874102.1) and its application in orange peel hydrolysis,, Int. J. Biol. Macromol., vol. 105, p.401–409, Dec. 2017,.
DOI: 10.1016/j.ijbiomac.2017.07.066
Google Scholar
[14]
D. S. Gade, M. V Dhumal, M. G. Nikam, and D. Bhosale, INFLUENCE OF DIFFERENT LEVELS OF XYLANASE ENZYME ON PERFORMANCE, LITTER QUALITY AND ECONOMICS OF BROILER CHICKEN,, 2017. Accessed: Dec. 17, 2020. [Online]. Available: www.tjprc.org.
Google Scholar
[15]
M. E. Abd El-Hack, M. Alagawany, V. Laudadio, R. Demauro, and V. Tufarelli, Dietary inclusion of raw faba bean instead of soybean meal and enzyme supplementation in laying hens: Effect on performance and egg quality,, Saudi J. Biol. Sci., vol. 24, no. 2, p.276–285, Feb. 2017,.
DOI: 10.1016/j.sjbs.2015.05.009
Google Scholar
[16]
N. A. M. Ridzuan, S. M. Shaarani, Z. I. M. Arshad, N. Masngut, N. Zainol, and J. H. Shariffuddin, Study on enzyme activities in pineapple fruit and pineapple waste to be applied as poultry supplement,, in IOP Conference Series: Materials Science and Engineering, 2020, vol. 991, no. 1,.
DOI: 10.1088/1757-899x/991/1/012064
Google Scholar
[17]
Y. Selvanathan and N. Masngut, A statistical study of factors affecting natural biovinegar fermentation from pineapple peel waste,, IOP Conf. Ser. Mater. Sci. Eng., vol. 1092, no. 1, p.012004, 2021,.
DOI: 10.1088/1757-899x/1092/1/012004
Google Scholar
[18]
K. Y. Butt, A. Altaf, M. A. Malana, M. I. Ghori, and A. Jamil, Optimal Production of Proteases from Bacillus subtilis Using Submerged Fermentation,, Pakistan J. Life Soc. Sci., vol. 16, no. 1, p.15–19, 2018, Accessed: Dec. 11, 2020. [Online]. Available: www.pjlss.edu.pk.
Google Scholar
[19]
N. A. Chohan, G. S. Aruwajoye, Y. Sewsynker-Sukai, and E. B. Gueguim Kana, Valorisation of potato peel wastes for bioethanol production using simultaneous saccharification and fermentation: Process optimization and kinetic assessment,, Renew. Energy, vol. 146, p.1031–1040, Feb. 2020,.
DOI: 10.1016/j.renene.2019.07.042
Google Scholar
[20]
M. Irfan, U. Asghar, M. Nadeem, R. Nelofer, and Q. Syed, Optimization of process parameters for xylanase production by Bacillus sp. in submerged fermentation,, J. Radiat. Res. Appl. Sci., vol. 9, no. 2, p.139–147, Apr. 2016,.
DOI: 10.1016/j.jrras.2015.10.008
Google Scholar
[21]
S. N. A. Rosli, R. Che Man, and N. Masngut, Factorial experimental design for xylanase production by Bacillus sp. isolated from Malaysia landfill soil,, in IOP Conference Series: Materials Science and Engineering, Mar. 2020, vol. 736, no. 2,.
DOI: 10.1088/1757-899x/736/2/022074
Google Scholar
[22]
A. Kumar, The Pharma Innovation Journal 2021; 10(5): 954-961 Utilization of bioactive components present in pineapple waste: A review,, 2021, Accessed: Apr. 15, 2022. [Online]. Available: http://www.thepharmajournal.com.
Google Scholar
[23]
D. Kania, R. Yunus, R. Omar, S. Abdul Rashid, and B. Mohamed Jan, Rheological investigation of synthetic-based drilling fluid containing non-ionic surfactant pentaerythritol ester using full factorial design,, Colloids Surfaces A Physicochem. Eng. Asp., vol. 625, p.126700, Sep. 2021,.
DOI: 10.1016/j.colsurfa.2021.126700
Google Scholar
[24]
M. M. Abdulredha, S. A. Hussain, and L. C. Abdullah, Optimization of the demulsification of water in oil emulsion via non-ionic surfactant by the response surface methods,, J. Pet. Sci. Eng., vol. 184, no. May 2019, p.106463, 2020,.
DOI: 10.1016/j.petrol.2019.106463
Google Scholar
[25]
S. A. Razali, N. Rasit, and C. K. Ooi, Statistical analysis of xylanase production from solid state fermentation of rice husk associated fungus Aspergillus Niger,, in Materials Today: Proceedings, Jan. 2019, vol. 39, p.1082–1087,.
DOI: 10.1016/j.matpr.2020.06.366
Google Scholar
[26]
F. S. Ire, I. J. Chima, and V. Ezebuiro, Enhanced xylanase production from UV-mutated Aspergillus niger grown on corn cob and sawdust,, Biocatal. Agric. Biotechnol., vol. 31, p.101869, Jan. 2021,.
DOI: 10.1016/j.bcab.2020.101869
Google Scholar
[27]
B. Kalim et al., Modulating the production of xylanase by Bacillus pumilus BS131 through optimization using waste fiber sludge,, Braz. J. Biol., vol. 83, p. e243874, Aug. 2021,.
DOI: 10.1590/1519-6984.243874
Google Scholar
[28]
D. Si et al., Production and characterization of functional wheat bran hydrolysate rich in reducing sugars, xylooligosaccharides and phenolic acids,, Biotechnol. Reports, vol. 27, p. e00511, Sep. 2020,.
DOI: 10.1016/j.btre.2020.e00511
Google Scholar
[29]
S. Banerjee, A. F. Patti, V. Ranganathan, and A. Arora, Hemicellulose based biorefinery from pineapple peel waste: Xylan extraction and its conversion into xylooligosaccharides,, Food Bioprod. Process., vol. 117, p.38–50, Sep. 2019,.
DOI: 10.1016/j.fbp.2019.06.012
Google Scholar
[30]
L. Gelain, L. van der Wielen, W. M. van Gulik, J. Geraldo da Cruz Pradella, and A. Carvalho da Costa, Mathematical modelling for the optimization of cellulase production using glycerol for cell growth and cellulose as the inducer substrate,, Chem. Eng. Sci. X, vol. 8, p.100085, Nov. 2020,.
DOI: 10.1016/j.cesx.2020.100085
Google Scholar
[31]
R. N. da Silva, L. F. de A. Melo, and C. L. Luna Finkler, Optimization of the cultivation conditions of Bacillus licheniformis BCLLNF-01 for cellulase production,, Biotechnol. Reports, vol. 29, p. e00599, Mar. 2021,.
DOI: 10.1016/j.btre.2021.e00599
Google Scholar
[32]
S. K. Pramanik et al., Fermentation optimization of cellulase production from sugarcane bagasse by Bacillus pseudomycoides and molecular modeling study of cellulase,, Curr. Res. Microb. Sci., vol. 2, p.100013, Dec. 2021,.
DOI: 10.1016/j.crmicr.2020.100013
Google Scholar
[33]
S. Boiko, Optimization of the catalytic process and increase of the Irpex lacteus cellulases yield for saccharification,, Bioresour. Technol. Reports, vol. 15, p.100780, Sep. 2021,.
DOI: 10.1016/j.biteb.2021.100780
Google Scholar
[34]
S. Poornima, P. Divya, N. Karmegam, V. Karthik, and R. Subbaiya, Aqueous two-phase partitioning and characterization of xylanase produced by Streptomyces geysiriensis from low cost lignocellulosic substrates,, J. Biosci. Bioeng., vol. 130, no. 6, p.571–576, Dec. 2020,.
DOI: 10.1016/j.jbiosc.2020.07.008
Google Scholar
[35]
O. C. Amadi et al., Process optimization for simultaneous production of cellulase, xylanase and ligninase by Saccharomyces cerevisiae SCPW 17 under solid state fermentation using Box-Behnken experimental design,, Heliyon, vol. 6, no. 7, p. e04566, Jul. 2020,.
DOI: 10.1016/j.heliyon.2020.e04566
Google Scholar