[1]
X. Jiang, K. Kim, S. Zhang, J. Johnson, G. Salazar, High-temperature piezoelectric sensing, Sensors 14 (2014) 144-169.
DOI: 10.3390/s140100144
Google Scholar
[2]
A. Kumar, A. Kumar, K. Prasad, Power generation characteristics of 0.50(Ba0.7Ca0.3)TiO3–0.50Ba(Zr0.2Ti0.8)O3/PVDF nanocomposites under impact loading, J. Mater. Sci.: Mater. Electron. 31 (2020) 12708–12714.
DOI: 10.1007/s10854-020-03822-9
Google Scholar
[3]
Subrato, K.M. Anand, A. Kumar, K. Prasad, Pressure sensing using piezoceramic – A low cost technique, AIP Conf. Proc. 2220 (2020) 040007-4.
DOI: 10.1063/5.0002294
Google Scholar
[4]
A. Kumar, A. Kumar, K. Prasad, Evaluation of (Na1/2Bi1/2)TiO3/PVDF piezocomposites for mechanical energy harvesting, Solid State Sci. 121 (2021) 106729 (8 pages).
DOI: 10.1016/j.solidstatesciences.2021.106729
Google Scholar
[5]
A. Kumar, A. Kumar, K. Prasad, Energy harvesting from ceramic/blended polymer nanocomposites: Ba0.85Ca0.15Zr0.10Ti0.90O3/Polyvinylidene fluoride–Polytetrafluoroethylene, Phys. Stat. Solidi A: Appln. Mater. Sci. 218 (2021) 2100382.
DOI: 10.1002/pssa.202100382
Google Scholar
[6]
S. Zhang, F. Yu, Piezoelectric materials for high-temperature sensors, J. Am. Ceram. Soc. 94 (2011) 3153-3170.
DOI: 10.1111/j.1551-2916.2011.04792.x
Google Scholar
[7]
D. Damjanovic, Materials for high-temperature piezoelectric transducers, Curr. Opin. Solid State Mater. Sci. 3 (1998) 469-473.
Google Scholar
[8]
W. Liu, X. Ren, Large piezoelectric effect in Pb-free ceramics, Phys. Rev. Lett. 103 (2009) 257602-4.
Google Scholar
[9]
W. Li, Z. Xu, R. Chu, P. Fu, G. Zang, Polymorphic phase transition and piezoelectric properties of (Ba1-xCax)(Ti0.9Zr0.1)O3 lead-free ceramics, Physica B 405 (2010) 4513-4516.
DOI: 10.1016/j.physb.2010.08.028
Google Scholar
[10]
D. Xue, Y. Zhou, H. Bao, C. Zhou, J. Gao, X. Ren, Elastic, piezoelectric, and dielectric properties of Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 Pb-free ceramic at the morphotropic phase boundary, J. Appl. Phys. 109 (2011) 054110-6.
DOI: 10.1063/1.3549173
Google Scholar
[11]
S. Yao, W. Ren, H. Ji, X. Wu, P. Shi, D. Xue, X. Ren, Z.-G. Ye, High pyroelectricity in lead-free 0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 ceramics, J. Phys. D: Appl. Phys. 45 (2012) 195301 (5pp).
DOI: 10.1088/0022-3727/45/19/195301
Google Scholar
[12]
D. Fu, Y. Kamai, N. Sakamoto, N. Wakiya, H. Suzuki, M. Itoh, Phase diagram and piezoelectric response of (Ba1−xCax)(Zr0.1Ti0.9)O3 solid solution, J. Phys.: Condens. Matter 25 (2013) 425901-5.
DOI: 10.1088/0953-8984/25/42/425901
Google Scholar
[13]
F. Xiao, W. Ma, Q. Sun, Z. Huan, J. Li, C. Tang, The electrostrictive effect and dielectric properties of lead-free 0.5Ba(ZrxTi1-x)O3–0.5(Ba0.75Ca0.25)TiO3 ceramics, J. Mater. Sci.: Mater. Electron. 24 (2013) 2653-2658.
DOI: 10.1007/s10854-013-1176-4
Google Scholar
[14]
M. Acosta, N. Novak, W. Jo, J. Rödel, Relationship between electromechanical properties and phase diagram in the Ba(Zr0.2Ti0.8)O3–x(Ba0.7Ca0.3)TiO3 lead-free piezoceramic, Acta Materialia 80 (2014) 48-55.
DOI: 10.1016/j.actamat.2014.07.058
Google Scholar
[15]
M. Acosta, N. Khakpash, T. Someya, N. Novak, W. Jo, H. Nagata, G.A. Rossetti, Jr., J. Rödel, Origin of the large piezoelectric activity in (1 − x)Ba(Zr0.2Ti0.8)O3–x(Ba0.7Ca0.3)TiO3 ceramics, Phys. Rev. B 91 (2015) 104108-11.
Google Scholar
[16]
H.I. Humburg, M. Acosta, W. Jo, K.G. Webber, J. Rödel, Stress-dependent electromechanical properties of doped (Ba1−xCax)(ZryTi1−y)O3, J. Euro. Ceram. Soc. 35 (2015) 1209-1217.
DOI: 10.1016/j.jeurceramsoc.2014.10.016
Google Scholar
[17]
K.P. Chandra, Rajan Singh, A.R. Kulkarni, K. Prasad, High temperature phase transition in (Ba0.76Ca0.24)(Zr0.04Ti0.96)O3 ceramic, Ferroelectr. 502 (2016) 231-239.
Google Scholar
[18]
K.P. Chandra, R. Singh, A.R. Kulkarni, K. Prasad, High temperature phase diagram of pseudo binary Ba(Zr0.2Ti0.8)O3-(Ba0.7Ca0.3)TiO3 ceramic system: In situ X-ray diffraction and dielectric studies, Ferroelectr. 514 (2017) 105-113.
DOI: 10.1080/00150193.2017.1357986
Google Scholar
[19]
L. Jin, F. Li, S.J. Zhang, Decoding the fingerprint of ferroelectric loops: Comprehension of the material properties and structures, J. Am. Ceram. Soc. 97, (2014) 1–27.
DOI: 10.1111/jace.12773
Google Scholar
[20]
U.K. Mahto, S.K. Roy, K. Prasad, High energy milled Ba0.06Na0.47Bi0.47TiO3 ceramic: structural and electrical properties, IEEE Transac. Dielectr. Elect. Insulati. 25 (2018) 174-180.
Google Scholar
[21]
K. Uchino, S. Nomura, L.E. Cross, S.J. Jang, R.E. Newnham, Electrostrictive effect in lead magnesium niobate single crystals, J. Appl. Phys. 51 (1980) 1142-1145.
DOI: 10.1063/1.327724
Google Scholar
[22]
J.M. Li, F.F. Wang, X.M. Qin, M. Xu, W.Z. Shi, Large electrostrictive strain in lead-free Bi0.5Na0.5TiO3–BaTiO3–KNbO3 ceramics, Appl. Phys. A 104 (2011) 117-122.
DOI: 10.1007/s00339-010-6074-5
Google Scholar
[23]
J.L. Jones, M. Hoffman, J.E. Daniels, A.J. Studer, Direct measurement of the domain switching contribution to the dynamic piezoelectric response in ferroelectric ceramics, Appl. Phys. Lett. 89 (2006) 092901-3.
DOI: 10.1063/1.2338756
Google Scholar