W-Nb Co-Doped VO2 Films Realizing near Room-Temperature Transition and Satisfactory Thermochromic Performance for Smart Window

Article Preview

Abstract:

The W-Nb co-doped VO2 films are prepared through hydrothermal method. The effects of the Nb and W dopants are investigated respectively on the phase transition temperature (θc) and optical properties of VO2 by keeping the concentration of partner dopant at 1.0 at.%. The Nb doping induces a reduction of θc at a rate of ~ -13.0 °C per at.% Nb as Nb is less than ~1.5 at.%. For more than 1.5 at.% Nb, the θc shows a slight increase from ~23.0 °C. The W doping leads to a linear decrease of θc with a rate of ~ -17.2 °C per at.% W, more effective in reducing θc than the Nb dopant. However, the heavy W doping results in more serious deterioration of the solar energy modulation (ΔTsol) than the Nb doping. Therefore, taking use of the complementary advantages of W and Nb dopants, the 1.0 at.% W + 1.5 at.% Nb co-doped VO2 realizes the room-temperature transition at 23.0 °C with a satisfactory ΔTsol of ~9.6%, much better than the 1.5 at.% W + 1.0 at.% Nb co-doped which has a θc of ~22.1 °C and ΔTsol of ~5.3%. This work demonstrates the W-Nb co-doping is an effective doping formula in improving the performance of VO2 for smart window applications.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1070)

Pages:

145-155

Citation:

Online since:

October 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. J. Morin, Oxides which show a metal-to-insulator transition at the neel temperature, Phys. Rev. Lett. 3 (1) (1959) 34–36.

DOI: 10.1103/physrevlett.3.34

Google Scholar

[2] J. Zhang, H. Jin, Z. Chen, M. Cao, P. Chen, Y. Dou, Y. Zhao, J. Li, Self-Assembling VO2 Nanonet with High Switching Performance at Wafer-Scale, Chem. Mater. 27 (21) (2015) 7419–7424.

DOI: 10.1021/acs.chemmater.5b03314

Google Scholar

[3] Z. Li, Y. Guo, Z. Hu, J. Su, J. Zhao, J. Wu, J. Wu, Y. Zhao, C. Wu, Y.i. Xie, Hydrogen Treatment for Superparamagnetic VO2 Nanowires with Large Room-Temperature Magnetoresistance, Angew Chem Int Ed Engl. 55 (28) (2016) 8018–8022.

DOI: 10.1002/anie.201603406

Google Scholar

[4] D. G. Sellers, E. J. Braham, R. Villarreal, B. Zhang, A. Parija, T. D. Brown, T. E. G. Alivio, H. Clarke, L. R. De Jesus, L. Zuin, D. Prendergast, X. Qian, R. Arroyave, P. J. Shamberger, S. Banerjee, An Atomic Hourglass and Thermometer Based on Diffusion of a Mobile Dopant in VO2, J Am Chem Soc. 142 (36) (2020) 15513–15526.

DOI: 10.1021/jacs.0c07152

Google Scholar

[5] Z. Zhao, Y. Liu, D. Wang, C. Ling, Q. Chang, J. Li, Y. Zhao, H. Jin, Sn dopants improve the visible transmittance of VO2 films achieving excellent thermochromic performance for smart window, Sol. Energy Mater. Sol. Cells. 209 (2020) 110443.

DOI: 10.1016/j.solmat.2020.110443

Google Scholar

[6] R. Zhang, H.-B. Jin, D. Guo, J. Zhang, Z. Zhao, Y. Zhao, J.-B. Li, The role of Fe dopants in phase stability and electric switching properties of Fe-doped VO2, Ceram. Int. 42 (16) (2016) 18764–18770.

DOI: 10.1016/j.ceramint.2016.09.017

Google Scholar

[7] J. Schläefer, C. Sol, T. Li, D. Malarde, M. Portnoi, T. J. Macdonald, S. K. Laney, M. J. Powell, I. Top, I. P. Parkin, I. Papakonstantinou, Thermochromic VO2 − SiO2 nanocomposite smart window coatings with narrow phase transition hysteresis and transition gradient width. Sol, Energy Mater. Sol. Cells. 200 (2019) 109944.

DOI: 10.1016/j.solmat.2019.109944

Google Scholar

[8] Y. Ke, J. Chen, G. Lin, S. Wang, Y. Zhou, J. Yin, P. S. Lee, Y. Long, Smart Windows: Electro-, Thermo-, Mechano-, Photo-chromics, and Beyond, Adv. Energy Mater. 9 (2019) 1902066.

DOI: 10.1002/aenm.201902066

Google Scholar

[9] M. Li, S. Magdassi, Y. Gao, Y. Long, Hydrothermal Synthesis of VO2 Polymorphs: Advantages, Challenges and Prospects for the Application of Energy Efficient Smart Windows, Small. 13 (2017) 1701147.

DOI: 10.1002/smll.201701147

Google Scholar

[10] T. Chang, X. Cao, Y. Long, H. Luo, P. Jin, How to properly evaluate and compare the thermochromic performance of VO2–based smart coatings, J. Mater. Chem. A.7 (2019) 24164−24172.

DOI: 10.1039/c9ta06681k

Google Scholar

[11] S. Guan, M. Souquet-Basiège, O. Toulemonde, D. Denux, N. Penin, M. Gaudon, A. Rougier, Towards room-temperature thermochromism of VO2 by Nb doping: magnetic investigations, Chem. Mater. 31 (2019) 9819−9830.

DOI: 10.1021/acs.chemmater.9b03906

Google Scholar

[12] D. Guo, C. Ling, C. Wang, D. Wang, J. Li, Z. Zhao, Z. Wang, Y. Zhao, J. Zhang, H. Jin, Hydrothermal one-step synthesis of highly dispersed M-phase VO2 nanocrystals and application to flexible thermochromic film, ACS Appl. Mater. Interfaces. 10 (2018) 28627−28634.

DOI: 10.1021/acsami.8b08908

Google Scholar

[13] A. A. Stabile, S. K. Singh, T.-L. Wu, L. Whittaker, S. Banerjee, G. Sambandamurthy, Separating electric field and thermal effects across the metal-insulator transition in vanadium oxide nanobeams, Appl. Phys. Lett. 107 (1) (2015) 257-262.

DOI: 10.1063/1.4926334

Google Scholar

[14] M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, Y. Tokura, Collective bulk carrier delocalization driven by electrostatic surface charge accumulation, Nature. 487 (2012) 459−462.

DOI: 10.1038/nature11296

Google Scholar

[15] K. Shibuya, J. Tsutsumi, T. Hasegawa, A. Sawa, Fabrication and Raman scattering study of epitaxial VO2 films on MgF2 (001) substrates, Appl. Phys. Lett. 103 (2) (2013) 34.

DOI: 10.1063/1.4813442

Google Scholar

[16] Y. Muraoka, Z. Hiroi, Metal-insulator transition of VO2 thin films grown on TiO2 (001) and (110) substrates, Appl. Phys. Lett. 80 (2002) 583.

DOI: 10.1063/1.1446215

Google Scholar

[17] Z. Zhao, Y. Liu, Z. Yu, C. Ling, J. Li, Y. Zhao, H. Jin, Sn-W co-doping improves thermochromic performance of VO2 films for smart windows, ACS Applied Energy Materials. 3 (10) (2020) 9972-9979.

DOI: 10.1021/acsaem.0c01651

Google Scholar

[18] J. Zhou, M. Xie, A. Cui, B. Zhou, K. Jiang, L. Shang, Z. Hu, J. Chu, Manipulating behaviors from heavy tungsten doping on interband electronic transition and orbital structure variation of vanadium dioxide films, ACS Appl. Mater. Interfaces. 10 (2018) 30548−30557.

DOI: 10.1021/acsami.8b09909

Google Scholar

[19] R. Chen, L. Miao, H. Cheng, E. Nishibori, C. Liu, T. Asaka, Y. Iwamoto, M. Takata, S. Tanemura, One-step hydrothermal synthesis of V1‑xWxO2 (M/R) nanorods with superior doping efficiency and thermochromic properties, J. Mater. Chem. A. 3 (2015) 3726−3738.

DOI: 10.1039/c4ta05559d

Google Scholar

[20] C. Ji, Z. Wu, X. Wu, H. Feng, J. Wang, Z. Huang, H. Zhou, W. Yao, J. Gou, Y. Jiang, Optimization of metal-to-insulator phase transition properties in polycrystalline VO2 films for terahertz modulation applications by doping, J. Mater. Chem. C. 6 (2018) 1722−1730.

DOI: 10.1039/c7tc05536f

Google Scholar

[21] D. Li, M. Li, J. Pan, Y. Luo, H. Wu, Y. Zhang, G. Li, Hydrothermal synthesis of Mo-doped VO2 /TiO2 composite nano-crystals with enhanced thermochromic performance, ACS Appl. Mater. Interfaces. 6 (2014) 6555−6561.

DOI: 10.1021/am500135d

Google Scholar

[22] Y. Zhao, G. Karaoglan-Bebek, X. Pan, M. Holtz, A. A. Bernussi, Z. Fan, Hydrogen-doping stabilized metallic VO2 (R) thin films and their application to suppress Fabry-Perot resonances in the terahertz regime, Appl. Phys. Lett. 104 (2014) 241901.

DOI: 10.1063/1.4884077

Google Scholar

[23] J. Wei, H. Ji, W. Guo, A. H. Nevidomskyy, D. Natelson, Hydrogen stabilization of metallic vanadium dioxide in single-crystal nanobeams, Nat. Nanotechnol. 7 (2012) 357−362.

DOI: 10.1038/nnano.2012.70

Google Scholar

[24] D. Vernardou, M. Pemble, D. Sheel, Tungsten‐doped vanadium oxides prepared by direct liquid injection MOCVD, Chemical Vapor Deposition. 13 (4) (2010) 158-162.

DOI: 10.1002/cvde.200606527

Google Scholar

[25] Y. Zhou, S. Ji, Y. Li, Y. Gao, H. Luo, P. Jin, Microemulsion-based synthesis of V1−xWxO2 @SiO2 core−shell structures for smart window applications, J. Mater. Chem. C. 2 (2014) 3812−3819.

DOI: 10.1039/c3tc32282c

Google Scholar

[26] N. Wang, S. Liu, X. T. Zeng, S. Magdassi, Y. Long, Mg/W-codoped vanadium dioxide thin films with enhanced visible transmittance and low phase transition temperature, J. Mater. Chem.C. 3 (2015) 6771−6777.

DOI: 10.1039/c5tc01062d

Google Scholar

[27] G. Karaoglan-Bebek, M. N. F. Hoque, M. Holtz, Z. Fan, A. A. Bernussi, Continuous tuning of W-doped VO2 optical properties for terahertz analog applications, Appl. Phys. Lett. 105 (2014) 201902.

DOI: 10.1063/1.4902056

Google Scholar

[28] H. Park, J. Kim, Y. Jung, Y. Kim, The phase transition and thermochromic characteristics of W/Mg-codoped monoclinic VO2 nanoparticle and its composite film, Journal of the Korean Chemical Society. 61 (2) (2017) 57-64.

DOI: 10.5012/jkcs.2017.61.2.57

Google Scholar

[29] M. Soltani, M. Chaker, E. Haddad, R.V. Kruzelecky, J. Margot, Effects of Ti-W codoping on the optical and electrical switching of vanadium dioxide thin films grown by a reactive pulsed laser deposition, Applied Physics Letters. 85 (11) (2004) 1958-1960.

DOI: 10.1063/1.1788883

Google Scholar

[30] I. Takahashi, M. Hibino, T. Kudo, Thermochromic properties of double-doped VO2 thin films prepared by a wet coating method using polyvanadate-based sols containing W and Mo or W and Ti, Japanese Journal of Applied Physics. 40 (40) (2001) 1391.

DOI: 10.1143/jjap.40.1391

Google Scholar

[31] C. Piccirillo, R. Binions, I. P. Parkin, Nb-doped VO2 thin films prepared by aerosol-assisted chemical vapour deposition, European Journal of Inorganic Chemistry. 25 (2007) 4050-4055.

DOI: 10.1002/ejic.200700284

Google Scholar

[32] A.E. Ersundu, M. Çelikbilek Ersundu, E. Doğan, M.B. Güven, A comparative investigation on thermal, structural and optical properties of W and Nb-doped VO2-based thermochromic thin films, Thin Solid Films. 700 (2020) 137919.

DOI: 10.1016/j.tsf.2020.137919

Google Scholar

[33] H. Kim, D. Roh, J. Yoo, D. S. Kim, Designable Phase Transition Temperature of VO2 Co-Doped with Nb and W Elements for Smart Window Application, Journal of Nanoscience and Nanotechnology. 19 (2019) 7185-7191.

DOI: 10.1166/jnn.2019.16618

Google Scholar

[34] Z. Zhao, J. Li, C. Ling, X. Zhao, Y. Zhao, H. Jin, Electric field driven abnormal increase in conductivity of tungsten-doped VO2 nanofilms, Thin Solid Films. 725 (2021) 138643.

DOI: 10.1016/j.tsf.2021.138643

Google Scholar

[35] T. D. Manning, I. P. Parkin, R. J. H. Clark, D. Sheel, M. E. Pemble, D. Vernadou, Intelligent window coatings: atmospheric pressure chemical vapour deposition of vanadium oxides, Journal of Materials Chemistry. 12 (10) (2002) 2936- 2939.

DOI: 10.1039/b205427m

Google Scholar

[36] J. N. Shi, D. L. Allara, Characterization of high-temperature reactions at the BaO/W interface, Langmuir. 12 (21) (1996) 5099-5108.

DOI: 10.1021/la960196+

Google Scholar

[37] J. Kasperkiewicz, J. A. Kovacich, D. Lichtman, XPS studies of vanadium and vanadium oxides, J. Electron Spectrosc. Relat. Phenom. 32 (1983) 123-132.

DOI: 10.1016/0368-2048(83)85090-7

Google Scholar

[38] Y. Dou, J. Li, M. Cao, D. Su, F. Rehman, J. Zhang, H. Jin, Oxidizing annealing effects on VO2 films with different microstructures, Applied Surface Science. 345 (4) (2015) 232-237.

DOI: 10.1016/j.apsusc.2015.03.044

Google Scholar

[39] C. Ling, Z. Zhao, X. Hu, J. Li, X. Zhao, Z. Wang, Y. Zhao, H. Jin, W doping and voltage driven metal-insulator transition in VO2 nano-films for smart switching devices, ACS Applied Nano Materials. 2 (10) (2019) 6738-6746.

DOI: 10.1021/acsanm.9b01640

Google Scholar