[1]
Conti J, Holtberg P, Diefenderfer J, et al. International energy outlook 2016 with projections to 2040[R]. USDOE Energy Information Administration (EIA), Washington, DC (United States). Office of Energy Analysis, (2016).
DOI: 10.2172/471439
Google Scholar
[2]
Bell L E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems[J]. Science. 2008, 321(5895): 1457-1461.
DOI: 10.1126/science.1158899
Google Scholar
[3]
Gayner C, Kar K K. Recent advances in thermoelectric materials[J]. Progress in Materials Science. 2016, 83: 330-382.
DOI: 10.1016/j.pmatsci.2016.07.002
Google Scholar
[4]
Zhang X, Zhao L. Thermoelectric materials: Energy conversion between heat and electricity[J]. Journal of Materiomics. 2015, 1(2): 92-105.
DOI: 10.1016/j.jmat.2015.01.001
Google Scholar
[5]
Sun Y, Xu W, Di C, et al. Metal-organic complexes-towards promising organic thermoelectric materials[J]. Synthetic Metals. 2017, 225: 22-30.
DOI: 10.1016/j.synthmet.2016.12.001
Google Scholar
[6]
He J, Kanatzidis M G, Dravid V P. High performance bulk thermoelectrics via a panoscopic approach[J]. Materials Today. 2013, 16(5): 166-176.
DOI: 10.1016/j.mattod.2013.05.004
Google Scholar
[7]
Famili M, Grace I M, Al Galiby Q, et al. Toward high thermoelectric performance of thiophene and ethylenedioxythiophene (EDOT) molecular wires[J]. Advanced Functional Materials. 2018, 28(15): 1703135.
DOI: 10.1002/adfm.201703135
Google Scholar
[8]
Harman T C, Taylor P J, Walsh M P, et al. Quantum dot superlattice thermoelectric materials and devices[J]. science. 2002, 297(5590): 2229-2232.
DOI: 10.1126/science.1072886
Google Scholar
[9]
Snyder G J, Toberer E S. Complex thermoelectric materials[M]. Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group, World Scientific, 2011, 101-110.
DOI: 10.1142/9789814317665_0016
Google Scholar
[10]
Pei Y, Shi X, Lalonde A, et al. Convergence of electronic bands for high performance bulk thermoelectrics[J]. Nature. 2011, 473(7345): 66-69.
DOI: 10.1038/nature09996
Google Scholar
[11]
Kihoi S K, Kahiu J N, Kim H, et al. Optimized Mn and Bi co-doping in SnTe based thermoelectric material: A case of band engineering and density of states tuning[J]. Journal of Materials Science & Technology, 2021, 85: 76-86.
DOI: 10.1016/j.jmst.2020.12.063
Google Scholar
[12]
Nielsen M D, Ozolins V, Heremans J P. Lone pair electrons minimize lattice thermal conductivity[J]. Energy & Environmental Science. 2013, 6(2): 570-578.
DOI: 10.1039/c2ee23391f
Google Scholar
[13]
Ghosh T, Dutta M, Sarkar D, et al. Insights into Low Thermal Conductivity in Inorganic Materials for Thermoelectrics[J]. Journal of the American Chemical Society, (2022).
Google Scholar
[14]
Lan Y, Minnich A J, Chen G, et al. Enhancement of thermoelectric figure‐of‐merit by a bulk nanostructuring approach[J]. Advanced Functional Materials. 2010, 20(3): 357-376.
DOI: 10.1002/adfm.200901512
Google Scholar
[15]
Singh K, Anwar S, Dubey P, et al. Influence of Temperatures on Structure, Thermoelectric, and Mechanical Properties of Nanocrystalline SnSe Thin Films Deposited by Thermal Evaporation[J]. Materials Today Communications, 2022: 103880.
DOI: 10.1016/j.mtcomm.2022.103880
Google Scholar
[16]
Chowdhury I, Prasher R, Lofgreen K, et al. On-chip cooling by superlattice-based thin-film thermoelectrics[J]. Nature nanotechnology. 2009, 4(4): 235-238.
DOI: 10.1038/nnano.2008.417
Google Scholar
[17]
Wan C, Gu X, Dang F, et al. Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2[J]. Nature materials. 2015, 14(6): 622-627.
DOI: 10.1038/nmat4251
Google Scholar
[18]
Venkatasubramanian R, Siivola E, Colpitts T, et al. Thin-film thermoelectric devices with high room-temperature figures of merit[J]. Nature. 2001, 413(6856): 597-602.
DOI: 10.1038/35098012
Google Scholar
[19]
Xu S, Chen Y, Li Y, et al. Universal, In Situ Transformation of Bulky Compounds into Nanoscale Catalysts by High-Temperature Pulse[J]. Nano letters. 2017, 17(9): 5817-5822.
DOI: 10.1021/acs.nanolett.7b03019
Google Scholar
[20]
Chen Y, Xu S, Zhu S, et al. Millisecond synthesis of CoS nanoparticles for highly efficient overall water splitting[J]. Nano Research. 2019, 12(9): 2259-2267.
DOI: 10.1007/s12274-019-2304-0
Google Scholar
[21]
Dou S, Xu J, Cui X, et al. High‐Temperature Shock Enabled Nanomanufacturing for Energy‐Related Applications[J]. Advanced Energy Materials, 2020, 10(33): 2001331.
DOI: 10.1002/aenm.202001331
Google Scholar
[22]
Soni A, Shen Y, Yin M, et al. Interface driven energy filtering of thermoelectric power in spark plasma sintered Bi2Te2.7Se0.3 nanoplatelet composites[J]. Nano letters. 2012, 12(8): 4305-4310.
DOI: 10.1021/nl302017w
Google Scholar
[23]
Zebarjadi M, Esfarjani K, Dresselhaus M S, et al. Perspectives on thermoelectrics: from fundamentals to device applications[J]. Energy & Environmental Science. 2012, 5(1): 5147-5162.
DOI: 10.1039/c1ee02497c
Google Scholar
[24]
Zhang D, Lei J, Guan W, et al. Enhanced thermoelectric performance of BiSbTe alloy: Energy filtering effect of nanoprecipitates and the effect of SiC nanoparticles[J]. Journal of Alloys and Compounds. 2019, 784: 1276-1283.
DOI: 10.1016/j.jallcom.2019.01.084
Google Scholar
[25]
Yang G, Niu R, Sang L, et al. Ultra‐High Thermoelectric Performance in Bulk BiSbTe/Amorphous Boron Composites with Nano‐Defect Architectures[J]. Advanced Energy Materials, 2020, 10(41): 2000757.
DOI: 10.1002/aenm.202000757
Google Scholar