Temporal Observation of Barkhausen Avalanche with Short-Range Interaction in Perpendicularly Magnetized Thin Film

Article Preview

Abstract:

We present here a method for measuring the temporal Bakehausen scaling exponent in a two-dimensional thin film. The scaling exponent with long-range interaction is observed to be consistent with theoretical and experimental results. In addition, we demonstrate the characteristic exponent with short-range interaction. Our method contributes to the understanding of DW dynamics and helps to optimize spintronic devices.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1070)

Pages:

183-187

Citation:

Online since:

October 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Barkhausen, Phys. Z 20, 401 (1919).

Google Scholar

[2] B. Alessandro, C. Beatrice, G. Bertotti, and A. Montorsi, Journal of Applied Physics 68, 2908 (1990).

Google Scholar

[3] O. Perković, K. Dahmen, and J. P. Sethna, Physical Review Letters 75, 4528 (1995).

Google Scholar

[4] S. Papanikolaou, F. Bohn, R. L. Sommer, G. Durin, S. Zapperi, and J. P. Sethna, Nature Physics 7, 316 (2011).

DOI: 10.1038/nphys1884

Google Scholar

[5] G. Durin, F. Bohn, M. A. Corrêa, R. L. Sommer, P. Le Doussal, and K. J. Wiese, Physical Review Letters 117, 087201 (2016).

DOI: 10.1103/physrevlett.117.087201

Google Scholar

[6] F. Bohn, G. Durin, M. A. Correa, N. R. Machado, R. D. Della Pace, C. Chesman, and R. L. Sommer, Scientific Reports 8, 11294 (2018).

DOI: 10.1038/s41598-018-29576-3

Google Scholar

[7] P. Cizeau, S. Zapperi, G. Durin, and H. E. Stanley, Physical Review Letters 79, 4669 (1997).

Google Scholar

[8] S. Zapperi, P. Cizeau, G. Durin, and H. E. Stanley, Physical Review B 58, 6353 (1998).

Google Scholar

[9] G. Durin and S. Zapperi, Physical Review Letters 84, 4705 (2000).

Google Scholar

[10] F. Bohn, M. A. Corrêa, M. Carara, S. Papanikolaou, G. Durin, and R. L. Sommer, Physical Review E 90, 032821 (2014).

Google Scholar

[11] D.-H. Kim, S.-B. Choe, and S.-C. Shin, Physical Review Letters 90, 087203 (2003).

Google Scholar

[12] K.-S. Ryu, H. Akinaga, and S.-C. Shin, Nature Physics 3, 547 (2007).

Google Scholar

[13] M.-Y. Im, P. Fischer, D.-H. Kim, and S.-C. Shin, Applied Physics Letters 95, 182504 (2009).

Google Scholar

[14] M. P. Grassi, A. B. Kolton, V. Jeudy, A. Mougin, S. Bustingorry, and J. Curiale, Physical Review B 98, 224201 (2018).

DOI: 10.1103/physrevb.98.224201

Google Scholar

[15] T. Xing, N. Vernier, X. Y. Zhang, D. Ravelosona, Y. G. Zhang, and W. S. Zhao, (to be published).

Google Scholar

[16] G. S. D. Beach, C. Nistor, C. Knutson, M. Tsoi, and J. L. Erskine, Nature Materials 4, 741 (2005).

Google Scholar

[17] J. Yang, C. Nistor, G. S. D. Beach, and J. L. Erskine, Physical Review B 77, 014413 (2008).

Google Scholar

[18] N. B. Caballero, I. Fernández Aguirre, L. J. Albornoz, A. B. Kolton, J. C. Rojas-Sánchez, S. Collin, J. M. George, R. Diaz Pardo, V. Jeudy, S. Bustingorry, and J. Curiale, Physical Review B 96, 224422 (2017).

DOI: 10.1103/physrevb.96.224422

Google Scholar