Preparation of Bamboo Long Fibers and their Reinforced Polypropylene Composites

Article Preview

Abstract:

In the context of carbon neutrality, it is of good economic and ecological value to replace synthetic fibres with natural fibres as reinforcing materials in the preparation of composites. The effect of the hot pressing process parameters on the physical and mechanical properties of the LBF/PP composites was further investigated. The distribution of LBF in the composites was observed by CT. The experimental results show that the hemicellulose content of the BF decreases and the lignin content decreases after the alkali treatment. The mechanical properties of the LBF/PP composites were better at a hot pressing temperature of 180°C, a hot pressing pressure of 8 MPa, a hot pressing time of 15 min and a mass fraction of 70% LBF, with bending strength and bending modulus reaching 226.1 MPa and 15.1 GPa respectively. CT results show that the fibres are evenly distributed in the composites and that the hot pressing process allows the molten PP to penetrate the pores of the LBF surface, forming a good physical and mechanical bond. These composites can be used in various applications such as construction, automotive, consumer goods etc. They are considered to be a suitable alternative to solid plastic products and materials.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1070)

Pages:

3-10

Citation:

Online since:

October 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] de Lima, L., Santana, R. M. C., & Rodriguez, C. D. C. (2020). Influence of Coupling Agent in Mechanical, Physical and Thermal Properties of Polypropylene/Bamboo Fiber Composites: Under Natural Outdoor Aging. Polymers, 12(4).

DOI: 10.3390/polym12040929

Google Scholar

[2] Dhir, D. K., Rashidi, A., Bogyo, G., Ryde, R., Pakpour, S., & Milani, A. S. (2020). Environmental Durability Enhancement of Natural Fibres Using Plastination: A Feasibility Investigation on Bamboo. Molecules, 25(3).

DOI: 10.3390/molecules25030474

Google Scholar

[3] Feng, J., Dong, P., Li, R. M., Li, C. L., Xie, X. B., & Shi, Q. S. (2019). Effects of wood fiber properties on mold resistance of wood polypropylene composites. International Biodeterioration & Biodegradation, 140, 152-159.

DOI: 10.1016/j.ibiod.2019.04.005

Google Scholar

[4] Guo, J., Liu, M. H., Wang, H. K., & Yu, Y. (2021). Non-isothermal crystallization kinetics of polypropylene/bamboo fiber/nano-TiO2 composites. Polymer Composites, 42(5), 2531-2543.

DOI: 10.1002/pc.25999

Google Scholar

[5] Han, S. H., Jeong, H. W., & Kim, Y. C. (2021). Study on the Odor and Physical Properties of Natural Fiber/Polypropylene Composites with Metal Oxides. Polymer-Korea, 45(5), 711-716.

DOI: 10.7317/pk.2021.45.5.711

Google Scholar

[6] Han, S. H., Park, K. M., & Kim, Y. C. (2020). Effect of Metal Oxides on the Odor and Physical Properties of Polypropylene/Bamboo Fiber Composite. Polymer-Korea, 44(3), 359-363.

DOI: 10.7317/pk.2020.44.3.359

Google Scholar

[7] Jeong, D. S., Han, S. H., & Kim, Y. C. (2018). Effects of Heat Treatment on the Physical Properties of PP Composites with Bamboo Fiber Treated by Silane. Polymer-Korea, 42(6), 960-966.

DOI: 10.7317/pk.2018.42.6.960

Google Scholar

[8] Jeong, D. S., Han, S. H., & Kim, Y. C. (2019). Study on the Odor Reduction of Polypropylene (PP)/Bamboo Fiber (BF) Composite. Polymer-Korea, 43(3), 459-464.

DOI: 10.7317/pk.2019.43.3.459

Google Scholar

[9] Jhu, Y. S., Yang, T. C., Hung, K. C., Xu, J. W., Wu, T. L., & Wu, J. H. (2019). Nonisothermal Crystallization Kinetics of Acetylated Bamboo Fiber-Reinforced Polypropylene Composites. Polymers, 11(6).

DOI: 10.3390/polym11061078

Google Scholar

[10] Madhavi, S., Raju, N. V., & Johns, J. (2021). Characterization of Bamboo - Polypropylene Composites: Effect of Coupling Agent. Fibers and Polymers, 22(11), 3183-3191.

DOI: 10.1007/s12221-021-0027-9

Google Scholar

[11] Nowaki, A., Ota, H., Ouchi, T., Matsumoto, K., Chan, C. H., & Nishida, H. (2019). Surface Properties of Micro Whiskers from Superheated Steam Treated Bamboo and Antistatic Properties of Composites with Polypropylene. Kobunshi Ronbunshu, 76(1), 90-97.

DOI: 10.1295/koron.2018-0038

Google Scholar

[12] Nowaki, A., Ouchi, T., Matsumoto, K., Tsukegi, T., & Nishida, H. (2018). Effect of Expandable Graphite on Flame Retardation of Bamboo Fiber Reinforced Polypropylene Composite. Kobunshi Ronbunshu, 75(2), 232-239.

DOI: 10.1295/koron.2017-0081

Google Scholar

[13] Pivsa-Art, S., & Pivsa-Art, W. (2021). Eco-friendly bamboo fiber-reinforced poly(butylene succinate) biocomposites. Polymer Composites, 42(4), 1752-1759.

DOI: 10.1002/pc.25930

Google Scholar

[14] Rocky, B. P., & Thompson, A. J. (2018). Production of Natural Bamboo Fibers-3: SEM and EDX Analyses of Structures and Properties. Aatcc Journal of Research, 5(6), 27-35.

DOI: 10.14504/ajr.5.6.4

Google Scholar

[15] Sridhar, M., Setty, R. N. V., & Johns, J. Electrical Properties of Bamboo Fiber Reinforced Polypropylene Composite: Effect of Coupling Agent. Journal of Natural Fibers.

DOI: 10.1080/15440478.2021.1875354

Google Scholar

[16] Wang, B. J., & Young, W. B. (2022). The Natural Fiber Reinforced Thermoplastic Composite Made of Woven Bamboo Fiber and Polypropylene. Fibers and Polymers, 23(1), 155-163.

DOI: 10.1007/s12221-021-0982-1

Google Scholar

[17] Young, Wen-Bin. The mechanical and fire safety properties of bamboo fiber reinforced polylactide biocomposites fabricated by injection molding.[J]. Journal of Composite Materials, (2015).

DOI: 10.1177/0021998314554437

Google Scholar

[18] Dhir D K , Rashidi A , Bogyo G , et al. Environmental Durability Enhancement of Natural Fibres Using Plastination: A Feasibility Investigation on Bamboo[J]. Molecules, 2020, 25(3).

DOI: 10.3390/molecules25030474

Google Scholar

[19] Yousif, B. F , Khan, et al. Fracture behaviour of bamboo fiber reinforced epoxy composites[J]. Composites, Part B. Engineering, (2017).

DOI: 10.1016/j.compositesb.2017.02.015

Google Scholar

[20] Analysis of tension and bending fracture behavior in moso bamboo (Phyllostachys pubescens) using synchrotron radiation micro-computed tomography (SRμCT)[J]. Holzforschung, 2019(12):1051-1058.

DOI: 10.1515/hf-2018-0275

Google Scholar