Tuning of Thermal and Electrical Properties of Polymer Dispersed Cholesteric Liquid Crystal

Article Preview

Abstract:

When a pure liquid crystal is dispersed into a suitable polymer to form micron-sized droplet, then it is called Polymer-dispersed liquid crystal (PDLC). In the present study, PDLC of different concentrations were prepared by dispersing a conducting polymer poly (3, 4–ethylenedioxy thiophene): poly (styrene sulfonate) into a cholestryl palmitate. The differential scanning calorimetry and fabry perot scattering studies were employed to study thermal and optical properties. It was found that the phase transition for PDLC occurs at a temperature different than those exhibited by pure liquid crystal. The behaviour of PDLC for parallel and perpendicular electric field has been investigated and the dielectric constant is determined. The value of dielectric constant and conductivity were found to increase with increasing concentration of polymer. The bistability and reflective properties of pure cholesteric liquid crystal can be minimized by dispersing polymer which makes material suitable for high contrast at large viewing angles.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1070)

Pages:

33-43

Citation:

Online since:

October 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] De Gennes, Pierre-Gilles, and Jacques Prost. The physics of liquid crystals. No. 83. Oxford university press, (1993).

Google Scholar

[2] S. Chandrasekhar, Liquid Crystals, 2nd ed. Cambridge University Press, Cambridge, (1994).

Google Scholar

[3] Demus, D., et al. Handbook of liquid crystals set., (2008).

Google Scholar

[4] Collings, Peter J. Liquid crystals: nature's delicate phase of matter. Princeton University Press, (2002).

Google Scholar

[5] Coates, David. Development and applications of cholesteric liquid crystals., Liquid Crystals 42.5-6 (2015): 653-665. https://doi.org/10.1080/02678292.2015.1020454.

DOI: 10.1080/02678292.2015.1020454

Google Scholar

[6] Dowden, W. A. Cholesteric liquid crystals: A review of developments and applications., non-destructive testing 1.2 (1967): 99-102. https://doi.org/10.1016/0029-1021(67)90029-1.

DOI: 10.1016/0029-1021(67)90029-1

Google Scholar

[7] Mani, Santosh, et al. Morphological and Thermal Behaviour of Monomer Dispersed Liquid Crystal., Proceedings of Fourth International Conference on Inventive Material Science Applications. Springer, Singapore, 2022. https://doi.org/10.1007/978-981-16-4321-7_58.

DOI: 10.1007/978-981-16-4321-7_58

Google Scholar

[8] Draude, Adam Paul, and Ingo Dierking. Thermotropic liquid crystals with low-dimensional carbon allotropes., Nano Express (2021). https://doi.org/10.1088/2632-959X/abdf2d.

DOI: 10.1088/2632-959x/abdf2d

Google Scholar

[9] Jayoti, Divya, Praveen Malik, and Arshdeep Singh. Analysis of morphological behaviour and electro-optical properties of silica nanoparticles doped polymer dispersed liquid crystal composites., Journal of Molecular Liquids 225 (2017): 456-461. https://doi.org/10.1016/j.molliq.2016.11.100.

DOI: 10.1016/j.molliq.2016.11.100

Google Scholar

[10] White, Timothy J., et al. Contribution of monomer functionality and additives to polymerization kinetics and liquid crystal phase separation in acrylate‐based polymer‐dispersed liquid crystals (PDLCs)., Liquid Crystals 34.12 (2007): 1377-1385. https://doi.org/10.1080/02678290701663936.

DOI: 10.1080/02678290701663936

Google Scholar

[11] Sun, Yujian, et al. A study on the electro-optical properties of thiol-ene polymer dispersed cholesteric liquid crystal (PDChLC) films., Molecules 22.2 (2017): 317. https://doi.org/10.3390/molecules22020317.

DOI: 10.3390/molecules22020317

Google Scholar

[12] Manda, Ramesh, et al. Effect of monomer concentration and functionality on electro-optical properties of polymer-stabilised optically isotropic liquid crystals., Liquid Crystals 45.5 (2018): 736-745. https://doi.org/10.1080/02678292.2017.1380239.

DOI: 10.1080/02678292.2017.1380239

Google Scholar

[13] Bashtyk, Y., et al. Primary converters for optical sensors of physical values based on polymer dispersed cholesteric liquid crystal., Molecular Crystals and Liquid Crystals 642.1 (2017): 41-https://doi.org/10.1080/15421406.2016.1254509.

DOI: 10.1080/15421406.2016.1254509

Google Scholar

[14] Mani, Santosh A., et al. Investigations of optical and thermal response of polymer dispersed binary liquid crystals., Molecular Crystals and Liquid Crystals 646.1 (2017): 183-193. https://doi.org/10.1080/15421406.2017.1287478.

DOI: 10.1080/15421406.2017.1287478

Google Scholar

[15] Jain, Anuja Katariya, and R. Deshmukh. An overview of polymer-dispersed liquid crystals composite films and their applications., Liq. Cryst. Disp. Technol (2020): 1-68 https://doi.org/10.5772/intechopen.91889.

DOI: 10.5772/intechopen.91889

Google Scholar

[16] Sharma, Vandna, and Pankaj Kumar. Electro-optically oriented Kerr and orientational phase study of normal mode polymer dispersed liquid crystals–Effect of dispersion of nanoparticles., Journal of Molecular Liquids (2021): 118030. https://doi.org/10.1016/j.molliq.2021.118030.

DOI: 10.1016/j.molliq.2021.118030

Google Scholar

[17] Gardymova, Anna P., et al. Polymer Dispersed Cholesteric Liquid Crystals with a Toroidal Director Configuration under an Electric Field., Polymers 13.5 (2021): 732. https://doi.org/10.3390/polym13050732.

DOI: 10.3390/polym13050732

Google Scholar

[18] Lin, Haonan, et al. Effects of the methacrylate monomers with different end groups on the morphologies, electro-optical and mechanical properties of polymer dispersed liquid crystals composite films., Liquid Crystals 48.5 (2021): 722-734. https://doi.org/10.1080/02678292. 2020.1815091.

DOI: 10.1080/02678292.2020.1815091

Google Scholar

[19] Liang, Zeng, et al. Influence of ZnO NPs on morphological and electro-optical properties of polymer-dispersed liquid crystals., Liquid Crystals (2021): 1-10. https://doi.org/10.1080/02678292.2021.1898055.

DOI: 10.1080/02678292.2021.1898055

Google Scholar

[20] He, Zemin, et al. Viewing-angle-switching film based on polymer dispersed liquid crystals for smart anti-peeping liquid crystal display., Liquid Crystals (2021): 1-7. https://doi.org/10.1080/02678292.2021.1944357.

DOI: 10.1080/02678292.2021.1944357

Google Scholar

[21] Ziqian He, Kun Yin, and Shin-Tson Wu, Passive polymer-dispersed liquid crystal enabled multi-focal plane displays Optics Express, (2020), Vol. 28, Issue 10, 15294-15299, https://doi.org/10.1364/OE.392489.

DOI: 10.1364/oe.392489

Google Scholar

[22] Li Jinqian, Yuzhen Zhao, Hong Gao, Dong Wang, Zongcheng Miao, Hui Cao, Zhou Yang & Wanli He (2021) Polymer dispersed liquid crystals doped with CeO2 nanoparticles for the smart window, Liquid Crystals, https://doi.org/10.1080/02678292.2021.1942573.

DOI: 10.1080/02678292.2021.1942573

Google Scholar

[23] Li, Chen-Yue; Wang, Xiao; Liang, Xiao; Sun, Jian; Li, Chun-Xin; Zhang, Shuai-Feng; Zhang, Lan-Ying; Zhang, Hai-Quan; Yang, Huai. Electro-Optical Properties of a Polymer Dispersed and Stabilized Cholesteric Liquid Crystals System Constructed by a Stepwise UV-Initiated Radical/ Cationic Polymerization (2019) Crystals 9, no. 6: 282. https://doi.org/10.3390/ cryst9060282.

DOI: 10.3390/cryst9060282

Google Scholar

[24] Mani, Santosh, et al. The influence of polymer on optical and thermal properties of nematic liquid crystals., Journal of Physics: Conference Series. Vol. 2070. No. 1. IOP Publishing, 2021. https://doi.org/10.1088/1742-6596/2070/1/012055.

DOI: 10.1088/1742-6596/2070/1/012055

Google Scholar

[25] Saeed, Mohsin H.; Zhang, Shuaifeng; Cao, Yaping; Zhou, Le; Hu, Junmei; Muhammad, Imran; Xiao, Jiumei; Zhang, Lanying; Yang, Huai, Recent Advances in The Polymer Dispersed Liquid Crystal Composite and Its Applications (2020), Molecules 25, no. 23: 5510. https://doi.org/10.3390/molecules25235510.

DOI: 10.3390/molecules25235510

Google Scholar

[26] Zhao, Xiaoshuai Li, Kemeng Wang, He Huai, Hongmei Ma & Yubao Sun, Effect of the introduction of mono-functional monomer on the electro-optic properties of reverse-mode polymer stabilised cholesteric liquid crystal, (2020) Liquid Crystals https://doi.org/10.1080/02678292.2020.1849835.

DOI: 10.1080/02678292.2020.1849835

Google Scholar

[27] Mishra, Krishnakant G., et al. Comparative study of nanoparticles doped in liquid crystal polymer system., Journal of Molecular Liquids 224 (2016): 668-671. https://doi.org/10.1016/j.molliq.2016.10.075.

DOI: 10.1016/j.molliq.2016.10.075

Google Scholar

[28] Shumeng Guo, Xiao Liang, Huimin Zhang, Wenbo Shen, Chunxin Li, Xiao Wang, Cuihong Zhang, Lanying Zhang & Huai Yang,An electrically light-transmittance-controllable film witha low-driving voltage from a coexistent system of polymer-dispersed and polymer-stabilised cholesteric liquid crystals, (2018), Liquid Crystals, 45:12, 1854-1860, https://doi.org/10.1080/02678292.2018.1501820.

DOI: 10.1080/02678292.2018.1501820

Google Scholar

[29] Li, Chen-Yue; Wang, Xiao; Liang, Xiao; Sun, Jian; Li, Chun-Xin; Zhang, Shuai-Feng; Zhang, Lan-Ying; Zhang, Hai-Quan; Yang, Huai. Electro-Optical Properties of a Polymer Dispersed and Stabilized Cholesteric Liquid Crystals System Constructed by a Stepwise UV-Initiated Radical/Cationic Polymerization (2019) Crystals 9, no. 6: 282. https://doi.org/10.3390/cryst9060282.

DOI: 10.3390/cryst9060282

Google Scholar

[30] Daniela Ailincai, Daniela Pamfil, Luminita Marin,Multiple, Bio-responsive polymer dispersed liquid crystal composites for sensing applications, Journal of Molecular Liquids (2018), Volume 272, 572-582, https://doi.org/10.1016/j.molliq.2018.09.125.

DOI: 10.1016/j.molliq.2018.09.125

Google Scholar

[31] Jong-Min Baek, Seung-Won Oh, Sang-Hyeok Kim, Tae-Hoon Yoon, Fabrication of an initiallyfocal- conic cholesteric liquid crystal cell without polymer stabilization, Displays, (2018) Volume 52, 55-58, https://doi.org/10.1016/j.displa.2017.10.002.

DOI: 10.1016/j.displa.2017.10.002

Google Scholar

[32] Gardymova, Anna P.; Krakhalev, Mikhail N.; Zyryanov, Victor Y.; Gruzdenko, Alexandra A.; Alekseev, Andrey A.; Rudyak, Vladimir Y. Polymer Dispersed Cholesteric Liquid Crystals with a Toroidal Director Configuration under an Electric Field (2021), Polymers 13, no. 5:732. https://doi.org/10.3390/polym13050732.

DOI: 10.3390/polym13050732

Google Scholar

[33] Mishra, Krishnakant K., Sheshmani K. Dubey, and Santosh A. Mani. Optical characterization of inorganic nanoparticles doped in polymer dispersed liquid crystal., Molecular Crystals and Liquid Crystals 647.1 (2017): 244-252. https://doi.org/10.1080/15421406.2017.1289603.

DOI: 10.1080/15421406.2017.1289603

Google Scholar

[34] Sun, Yujian; Gao, Yanzi; Zhou, Le; Huang, Jianhua; Fang, Hua; Ma, Haipeng; Zhang, Yi; Yang, Jie; Song, Ping; Zhang, Cuihong; Zhang, Lanying; Li, Fasheng; Zhao, Yuzhen; Li, Kexuan. A Study on the Electro-Optical Properties of Thiol-Ene Polymer Dispersed Cholesteric Liquid Crystal (PDChLC) Films (2017). Molecules 22, no. 2: 317. https://doi.org/10.3390/molecules22020317.

DOI: 10.3390/molecules22020317

Google Scholar

[35] Mishra, Krishnakant K, S. K. Dubey, Santosh A. Mani, Madhavi S. Pradhan. Comparative study of nanoparticles doped in Liquid Crystal Polymer System. Journal of Molecular Liquids, (2016), 224: 668-671. http://dx.doi.org/10.1016/j.molliq.2016.10.075.

DOI: 10.1016/j.molliq.2016.10.075

Google Scholar

[36] Y. Bashtyk, O. Bojko, A. Fechan, P. Grzyb & P. Turyk, Primary converters for optical sensors of physical values based on polymer dispersed cholesteric liquid crystal, (2017) Molecular Crystals and Liquid Crystals, 642:1, 41-46, https://doi.org/10.1080/15421406.2016.1254509.

DOI: 10.1080/15421406.2016.1254509

Google Scholar

[37] Hongqi Gao, Shuaifeng Zhang, Mohsin Hassan Saeed, Gang Chen, Haonan Lin, Junyi Huang, Lanying Zhang, Qian Wang & Hui Cao, Study on the morphologies and electro-optical properties of cyano-phenyl-ester liquid crystals/polymer composite films prepared by stepwise polymerisation, (2020), Liquid Crystals, 47:10, 1497-1506, https://doi.org/10.1080/02678292.2020.1737976.

DOI: 10.1080/02678292.2020.1737976

Google Scholar

[38] Sharma, Vandna, Pankaj Kumar, and Kuldeep Kumar Raina. Simultaneous effects of external stimuli on preparation and performance parameters of normally transparent reverse mode polymer-dispersed liquid crystals—a review., Journal of Materials Science 56.34 (2021): 18795-18836. https://doi.org/10.1007/s10853-021-06489-7.

DOI: 10.1007/s10853-021-06489-7

Google Scholar

[39] Mhatre, Manoj M., Anuja Katariya-Jain, and Rajendra R. Deshmukh. Enhancing morphological, electro-optical and dielectric properties of polymer-dispersed liquid crystal by doping of disperse Orange 25 dye in LC E7., Liquid Crystals (2021): 1-14. https://doi.org/10.1080/02678292.2021.2007548.

DOI: 10.1080/02678292.2021.2007548

Google Scholar

[40] Pozhidaev, E. P., et al. Polymer dispersed liquid crystals with electrically controlled light scattering in the visible and near-infrared ranges., Optical Materials Express 10.12 (2020): 3030-3040.https://doi.org/10.1364/OME.410163.

DOI: 10.1364/ome.410163

Google Scholar

[41] De Filpo, Giovanni, et al. Order parameter and electro-optical properties in polymer-dispersed liquid crystals., Liquid Crystals 48.8 (2021): 1206-1214. https://doi.org/10.1080/02678292.2020.1851416.

DOI: 10.1080/02678292.2020.1851416

Google Scholar

[42] Kumari, Asha, et al. Pseudopeptidic Polymer Microsphere-Filled Liquid Crystals as High-Performance Light-Scattering Switches., ACS Applied Polymer Materials (2021). https://doi.org/10.1021/acsapm.1c00945.

DOI: 10.1021/acsapm.1c00945.s001

Google Scholar

[43] Meng, Xiangshen, et al. Polymer dispersed liquid crystals doped with low concentration γ-Fe2O3 nanoparticles., Liquid Crystals (2021): 1-15. https://doi.org/10.1080/02678292.2020.1852620.

Google Scholar

[44] Ramanitra, H., et al. Application of polymer dispersed liquid crystal (PDLC) nematic: optical-fiber variable attenuator., Mol. Cryst. Liq. Cryst. 404.1 (2003): 57-73. https://doi.org/10.1080/15421400390249952.

DOI: 10.1080/15421400390249952

Google Scholar

[45] Higgins, Daniel A., Jeffrey E. Hall, and Aifang Xie. Optical microscopy studies of dynamics within individual polymer-dispersed liquid crystal droplets., Accounts of chemical research 38.2 (2005): 137-145. https://doi.org/10.1021/ar040106p.

DOI: 10.1021/ar040106p

Google Scholar

[46] Serbutoviez, C., et al. Polymerization-induced phase separation. 2. Morphology of polymer-dispersed liquid crystal thin films., Macromolecules 29.24 (1996): 7690-7698. https://doi.org/10.1021/ma960293+.

DOI: 10.1021/ma960293+

Google Scholar

[47] Kitzerow, H-S., and P. P. Crooker. Electric field effects on the droplet structure in polymer dispersed cholesteric liquid crystals., Liquid Crystals 13.1 (1993): 31-43. https://doi.org/10.1080/02678299308029051.

DOI: 10.1080/02678299308029051

Google Scholar

[48] Manaila-Maximean, D., et al. Polymer-dispersed cholesteric liquid crystals reflecting in the infrared region., Molecular Crystals and Liquid Crystals 417.1 (2004): 199-205. https://doi.org/10.1080/15421400490478830.

DOI: 10.1080/15421400490478830

Google Scholar

[49] Sun, Yujian, et al. A study on the electro-optical properties of thiol-ene polymer dispersed cholesteric liquid crystal (PDChLC) films., Molecules 22.2 (2017): 317. https://doi.org/10.3390/molecules22020317.

DOI: 10.3390/molecules22020317

Google Scholar