An Explicit Thermal Resistance Model Regarding Self-Heating Effect of AlGaN/GaN High Electron Mobility Transistor

Article Preview

Abstract:

This paper introduced an accurate empirical model for the thermal resistance of a single-finger AlGaN-GaN high electron mobility transistor (HEMT) on three different substrates including Sapphire, SiC and Si. The model reckons the constant thermal conductivity of GaN and substrate, thickness of host substrate layers, gate length (Lg) and width (Wg). The model plausibility is verified by comparing it with DC channel temperature measurement method and charge controlled based device modeling which agrees very favorable observation of the model data. Having nimble expression for the channel temperature is of inordinate importance in the field of designers of power device and monolithic microwave integrated circuits. Proposed model gives a variety of inquiries that would be impossible or impractical to do using time-consuming numerical simulations.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1074)

Pages:

125-131

Citation:

Online since:

November 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Nuttinck, E. Gebara, J. Laskar, and M. Harris, Development of GaN wide bandgap technology for microwave power applications,, IEEE Microw. Mag., vol. 3, no. 1, (2002).

DOI: 10.1109/6668.990699

Google Scholar

[2] S. Chakraborty and T. W. Kim, Comprehensive Schottky Barrier Height Behavior and Reliability Instability with Ni/Au and Pt/Ti/Pt/Au on AlGaN/GaN High-Electron-Mobility Transistors,, Micromachines, vol. 13, no. 1, (2022).

DOI: 10.3390/mi13010084

Google Scholar

[3] W. Amir et al., A quantitative approach for trap analysis between Al0.25Ga0.75N and GaN in high electron mobility transistors,, Sci. Rep., vol. 11, no. 1, p.1–9, (2021).

Google Scholar

[4] R. J. T. Simms, J. W. Pomeroy, M. J. Uren, T. Martin, and M. Kuball, Channel temperature determination in high-power AlGaN/GaN HFETs using electrical methods and Raman spectroscopy,, IEEE Trans. Electron Devices, vol. 55, no. 2, p.478–482, (2008).

DOI: 10.1109/ted.2007.913005

Google Scholar

[5] J. Park, M. W. Shin, and C. C. Lee, Thermal modeling and measurement of AlGaN-GaN HFETs built on sapphire and SiC substrates,, IEEE Trans. Electron Devices, vol. 51, no. 11, p.1753–1759, (2004).

DOI: 10.1109/ted.2004.836540

Google Scholar

[6] A. M. Darwish, A. J. Bayba, and H. A. Hung, Thermal resistance calculation of AlGaN – GaN Devices,, IEEE Trans. Microw. Theory Tech., vol. 52, no. 11, p.2611–2620, (2004).

DOI: 10.1109/tmtt.2004.837200

Google Scholar

[7] J. Kuzmik, P. Javorka, A. Alam, M. Marso, and M. Heuken, Determination of Channel Temperature in AlGaN/GaN HEMTs Grown on Sapphire and Silicon Substrates Using DC Characterization Method,, vol. 49, no. 8, p.1496–1498, (2002).

DOI: 10.1109/ted.2002.801430

Google Scholar

[8] R. Gaska, A. Osinsky, J. W. Yang, and M. S. Shur, Self-Heating in High-Power AlGaN-GaN HFET ' s,, vol. 19, no. 3, p.89–91, (1998).

DOI: 10.1109/55.661174

Google Scholar

[9] R. Gaska, Q. Chen, J. Yang, A. Osinsky, M. Asif Khan, and M. S. Shur, High-temperature performance of AlGaN/GaN HFET's on SiC substrates,, IEEE Electron Device Lett., vol. 18, no. 10, p.492–494, (1997).

DOI: 10.1109/55.624930

Google Scholar

[10] F. Bertoluzza, N. Delmonte, and R. Menozzi, Three-dimensional finite-element thermal simulation of GaN-based HEMTs,, Microelectron. Reliab., vol. 49, no. 5, p.468–473, (2009).

DOI: 10.1016/j.microrel.2009.02.009

Google Scholar

[11] A. Darwish, A. J. Bayba, and H. A. Hung, Channel temperature analysis of GaN HEMTs with nonlinear thermal conductivity,, IEEE Trans. Electron Devices, vol. 62, no. 3, p.840–846, (2015).

DOI: 10.1109/ted.2015.2396035

Google Scholar

[12] C. Gang, Nanoscale Energy Transport and Conversion.

Google Scholar

[13] P. M. Kirchhoff, G, Vorlesungen über die Theorie der Wärme,. 1894.

Google Scholar

[14] W. B. Joyce, Thermal resistance of heat sinks with temperature-dependent conductivity,, Solid State Electron., vol. 18, no. 4, p.321–322, 1975,.

DOI: 10.1016/0038-1101(75)90085-4

Google Scholar

[15] P. C. Canfield, D. J. Allstot, and S. C. F. Lam, Modeling of Frequency and Temperature Effects in GaAs MESFET's,, IEEE J. Solid-State Circuits, vol. 25, no. 1, p.299–306, (1990).

DOI: 10.1109/4.50317

Google Scholar

[16] M. K. Chattopadhyay and S. Tokekar, Thermal model for dc characteristics of algan/gan hemts including self-heating effect and non-linear polarization,, Microelectronics J., vol. 39, no. 10, p.1181–1188, (2008).

DOI: 10.1016/j.mejo.2008.01.043

Google Scholar

[17] S. P. McAlister, J. A. Bardwell, S. Haffouz, and H. Tang, Self-heating and the temperature dependence of the dc characteristics of GaN heterostructure field effect transistors,, J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., vol. 24, no. 3, p.624–628, (2006).

DOI: 10.1116/1.2172921

Google Scholar

[18] W. Deng, J. Huang, X. Ma, and J. J. Liou, An explicit surface potential calculation and compact current model for AlGaN/GaN HEMTs,, IEEE Electron Device Lett., vol. 36, no. 2, p.108–110, (2015).

DOI: 10.1109/led.2015.2388706

Google Scholar