[1]
S. Nuttinck, E. Gebara, J. Laskar, and M. Harris, Development of GaN wide bandgap technology for microwave power applications,, IEEE Microw. Mag., vol. 3, no. 1, (2002).
DOI: 10.1109/6668.990699
Google Scholar
[2]
S. Chakraborty and T. W. Kim, Comprehensive Schottky Barrier Height Behavior and Reliability Instability with Ni/Au and Pt/Ti/Pt/Au on AlGaN/GaN High-Electron-Mobility Transistors,, Micromachines, vol. 13, no. 1, (2022).
DOI: 10.3390/mi13010084
Google Scholar
[3]
W. Amir et al., A quantitative approach for trap analysis between Al0.25Ga0.75N and GaN in high electron mobility transistors,, Sci. Rep., vol. 11, no. 1, p.1–9, (2021).
Google Scholar
[4]
R. J. T. Simms, J. W. Pomeroy, M. J. Uren, T. Martin, and M. Kuball, Channel temperature determination in high-power AlGaN/GaN HFETs using electrical methods and Raman spectroscopy,, IEEE Trans. Electron Devices, vol. 55, no. 2, p.478–482, (2008).
DOI: 10.1109/ted.2007.913005
Google Scholar
[5]
J. Park, M. W. Shin, and C. C. Lee, Thermal modeling and measurement of AlGaN-GaN HFETs built on sapphire and SiC substrates,, IEEE Trans. Electron Devices, vol. 51, no. 11, p.1753–1759, (2004).
DOI: 10.1109/ted.2004.836540
Google Scholar
[6]
A. M. Darwish, A. J. Bayba, and H. A. Hung, Thermal resistance calculation of AlGaN – GaN Devices,, IEEE Trans. Microw. Theory Tech., vol. 52, no. 11, p.2611–2620, (2004).
DOI: 10.1109/tmtt.2004.837200
Google Scholar
[7]
J. Kuzmik, P. Javorka, A. Alam, M. Marso, and M. Heuken, Determination of Channel Temperature in AlGaN/GaN HEMTs Grown on Sapphire and Silicon Substrates Using DC Characterization Method,, vol. 49, no. 8, p.1496–1498, (2002).
DOI: 10.1109/ted.2002.801430
Google Scholar
[8]
R. Gaska, A. Osinsky, J. W. Yang, and M. S. Shur, Self-Heating in High-Power AlGaN-GaN HFET ' s,, vol. 19, no. 3, p.89–91, (1998).
DOI: 10.1109/55.661174
Google Scholar
[9]
R. Gaska, Q. Chen, J. Yang, A. Osinsky, M. Asif Khan, and M. S. Shur, High-temperature performance of AlGaN/GaN HFET's on SiC substrates,, IEEE Electron Device Lett., vol. 18, no. 10, p.492–494, (1997).
DOI: 10.1109/55.624930
Google Scholar
[10]
F. Bertoluzza, N. Delmonte, and R. Menozzi, Three-dimensional finite-element thermal simulation of GaN-based HEMTs,, Microelectron. Reliab., vol. 49, no. 5, p.468–473, (2009).
DOI: 10.1016/j.microrel.2009.02.009
Google Scholar
[11]
A. Darwish, A. J. Bayba, and H. A. Hung, Channel temperature analysis of GaN HEMTs with nonlinear thermal conductivity,, IEEE Trans. Electron Devices, vol. 62, no. 3, p.840–846, (2015).
DOI: 10.1109/ted.2015.2396035
Google Scholar
[12]
C. Gang, Nanoscale Energy Transport and Conversion.
Google Scholar
[13]
P. M. Kirchhoff, G, Vorlesungen über die Theorie der Wärme,. 1894.
Google Scholar
[14]
W. B. Joyce, Thermal resistance of heat sinks with temperature-dependent conductivity,, Solid State Electron., vol. 18, no. 4, p.321–322, 1975,.
DOI: 10.1016/0038-1101(75)90085-4
Google Scholar
[15]
P. C. Canfield, D. J. Allstot, and S. C. F. Lam, Modeling of Frequency and Temperature Effects in GaAs MESFET's,, IEEE J. Solid-State Circuits, vol. 25, no. 1, p.299–306, (1990).
DOI: 10.1109/4.50317
Google Scholar
[16]
M. K. Chattopadhyay and S. Tokekar, Thermal model for dc characteristics of algan/gan hemts including self-heating effect and non-linear polarization,, Microelectronics J., vol. 39, no. 10, p.1181–1188, (2008).
DOI: 10.1016/j.mejo.2008.01.043
Google Scholar
[17]
S. P. McAlister, J. A. Bardwell, S. Haffouz, and H. Tang, Self-heating and the temperature dependence of the dc characteristics of GaN heterostructure field effect transistors,, J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., vol. 24, no. 3, p.624–628, (2006).
DOI: 10.1116/1.2172921
Google Scholar
[18]
W. Deng, J. Huang, X. Ma, and J. J. Liou, An explicit surface potential calculation and compact current model for AlGaN/GaN HEMTs,, IEEE Electron Device Lett., vol. 36, no. 2, p.108–110, (2015).
DOI: 10.1109/led.2015.2388706
Google Scholar