Characterization and Performance of Supported Noble Metal (Pt) on the Production of Levulinic Acid from Cellulose

Article Preview

Abstract:

Platinum (Pt), a noble metal, is known for its ability to regenerate and be recycled even without any reactivation procedure, and still demonstrated good stability. The cost of the noble metal can be reduced by incorporating the metal into the pores of catalyst support rather than using it individually. Hence, in this research study, 4 wt.% Pt supported on silica-alumina (SiO2-Al2O3) and gamma-alumina (γ-Al2O3) was synthesized using wet impregnation method, then followed by catalyst calcination at 500 °C. The catalyst was then characterized using Thermogravimetric Analysis (TGA), Fourier-Transform Infrared Spectroscopy (FTIR), Brunauer–Emmett–Teller (BET), and particle size analyzer where catalyst with high surface area and pore volume demonstrated an excellent performance for the catalytic reaction of cellulose. Experimental results showed that catalyst Pt/SiO2-Al2O3 with the highest surface area and pore volume (466.4 m2/g and 0.1157 cm3/g, respectively) exhibited the highest catalytic performance with the conversion of cellulose up to 65.8% and 30.9% levulinic acid (LA) yield produced at the reaction temperature of 200 °C in a semi-batch reactor for 8 hrs.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1077)

Pages:

193-202

Citation:

Online since:

December 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Signoretto, S. Taghavi, E. Ghedini and F. Menegazzo, Catalytic production of levulinic acid (LA) from actual biomass, Molecules (Basel, Switzerland). 24 (2019) 1–20.

DOI: 10.3390/molecules24152760

Google Scholar

[2] A. Caretto and A. Perosa, Upgrading of levulinic acid with dimethylcarbonate as solvent/ reagent, ACS Sustain. Chem. Eng. 1 (2013), 6–11.

DOI: 10.1021/sc400067s

Google Scholar

[3] Information on https://openscholar.dut.ac.za/bitstream/10321/1713/1/MTHEMBU_2016.pdf.

Google Scholar

[4] L. Peng, L. Lin, J. Zhang, J. Zhuang, B. Zhang and Y. Gong, Catalytic conversion of cellulose to levulinic acid by metal chlorides, Molecules. 15 (2010) 5258–5272.

DOI: 10.3390/molecules15085258

Google Scholar

[5] K. Wang, J. Ye, M. Zhou, P. Liu, X. Liang, J. Xu and J. Jiang, Selective conversion of cellulose to levulinic acid and furfural in sulfolane/water solvent, Cellul. 24 (2017) 1383–1394.

DOI: 10.1007/s10570-016-1184-7

Google Scholar

[6] G. Busca, Silica-alumina catalytic materials: a critical review, Catal. Today. 357 (2019) 621–629.

DOI: 10.1016/j.cattod.2019.05.011

Google Scholar

[7] E. J. M. Hensen, D. G. Poduval, P. C. M. M. Magusin, A, E. Coumans and J. A. R. Veen, Formation of acid sites in amorphous silica-alumina, J. Catal. 269 (2010) 201–218.

DOI: 10.1016/j.jcat.2009.11.008

Google Scholar

[8] M. E. Ali, M. M. Rahman, S. M. Sarkar and S. B. A. Hamid, Heterogeneous metal catalysts for oxidation reactions. J. of Nanomater. 2014 (2014) 1-23.

Google Scholar

[9] K. Y. Paranjpe, Alpha, beta and gamma alumina as a catalyst - a review, J. Pharm. Innov. 6 (2017) 236–238.

Google Scholar

[10] P. Kim, Y. Kim, H. Kim, I. K. Song and J. Yi, Synthesis and characterization of mesoporous alumina for use as a catalyst support in the hydrodechlorination of 1,2-dichloropropane: Effect of preparation condition of mesoporous alumina, J. Mol. Catal. A Chem. 219 (2014) 87–95.

DOI: 10.1016/j.molcata.2004.04.038

Google Scholar

[11] M. A. Usman, T. O. Alaje, V. I. Ekwueme and E. A. Awe, Investigation of the catalytic performance of a novel nickel/kit-6 nanocatalyst for the hydrogenation of vegetable oil, ISRN Chem. Eng. 2012 (2012) 1–6.

DOI: 10.5402/2012/526852

Google Scholar

[12] D. Ding, J. Wang, J. Xi, X. Liu, G. Lu and Y. Wang, High-yield production of levulinic acid from cellulose and its upgrading to γ- valerolactone, Green Chem. 16 (2014) 3846−3853.

DOI: 10.1039/c4gc00737a

Google Scholar

[13] K. Wang, Y. Liu, W. Wu, Y. Chen, L. Fang, W. Li and H. Ji, Production of levulinic acid via cellulose conversion over metal oxide-loaded MOF catalysts in aqueous medium, Catal. Letters. 150 (2020) 322–331.

DOI: 10.1007/s10562-019-03023-y

Google Scholar

[14] A. Shrotri, A. Tanksale, J. N. Beltramini, H. Gurav and S. V. Chilukuri, Conversion of cellulose to polyols over promoted nickel catalysts, Catal. Sci. Techno. 2 (2012) 1852–1858.

DOI: 10.1039/c2cy20119d

Google Scholar

[15] X. Zhang, L. J. Durndell, M. A. Isaacs, C. M. A. Parlett, A. F. Lee and K. Wilson, Platinum-catalyzed aqueous-phase hydrogenation of d‑glucose to d‑sorbitol, ACS Catal. 6 (2016) 7409–7417.

DOI: 10.1021/acscatal.6b02369

Google Scholar

[16] P. N. S. M. M. Kamal, N. I. Mohamad, M. E. A. Serit, N.S.A. Rahim, N. I. Jimat, and A. S. Alikasturi, Study on the effect of reaction and calcination temperature towards glucose hydrolysis using solid acid catalyst, Mater. Today: Proc. 31 (2020) 282-286.

DOI: 10.1016/j.matpr.2020.06.008

Google Scholar

[17] G. Li, W. Liu, C. Ye, X. Li and C. L, Chemocatalytic conversion of cellulose into key platform chemicals, Int. J. Polym. Sci. 2018 (2018) 1-20.

Google Scholar

[18] M. N. N. Shahirah, J. Gimbun, S. S. Lam, Y. H. Ng, & C. K. Cheng, Synthesis and characterization of a La–Ni/Α-Al2O3 catalyst and its use in pyrolysis of glycerol to syngas, Renew. Energy. 132 (2019) 1389–1401.

DOI: 10.1016/j.renene.2018.09.033

Google Scholar

[19] M. N. I. N. Azan, P. N. S. M. M. Kamal, M. A. A. Rasmadi, M. H. Adzhar, A. S. A. Taufek, N. S. M. Nasir and A. S. Alikasturi (2020). Production of biodiesel from palm oil refinery pilot plant waste using Ni/CaO (ES) catalyst. Mater. Today: Proc. 31 (2020), 292-299.

DOI: 10.1016/j.matpr.2020.06.012

Google Scholar

[20] S. S. Joshi, A. D. Zodge, K. V. Pandare, and B. D. Kulkarni, Efficient conversion of cellulose to levulinic acid by hydrothermal treatment using zirconium dioxide as a recyclable solid acid catalyst, Ind. and Eng. Chem. Res. 53 (2014) 18796–18805.

DOI: 10.1021/ie5011838

Google Scholar

[21] J. E. Mudd, T. J. Gardner and A. G. Sault Platinum Catalyzed Decomposition of Activated Carbon: 1. Initial Studies (2001).

DOI: 10.2172/791893

Google Scholar

[22] M. Yabushita, H. Kobayashi, K. Hara, and A. Fukuoka, Quantitative evaluation of ball-milling effects on the hydrolysis of cellulose catalysed by activated carbon, Catal. Sci. Techno. 4 (2014) 2312–2317.

DOI: 10.1039/c4cy00175c

Google Scholar

[23] V. G. Deshmane, S. L. Owen, R. Y. Abrokwah and D. Kuila, Mesoporous nanocrystalline TiO2 supported metal (Cu, Co, Ni, Pd, Zn, and Sn) catalysts: Effect of metal-support interactions on steam reforming of methanol, J. of Mol. Catal. A Chem. 408 (2015) 202–213.

DOI: 10.1016/j.molcata.2015.07.023

Google Scholar

[24] H. Zhang, H. Huang, Y. Ji, Z. Qiao, C. Zhao and J. He, Preparation, characterization, and application of magnetic Fe-SBA-15 mesoporous silica molecular sieves, J. Auto. Methods and Manage. Chem. 2010 (2010) 323509.

DOI: 10.1155/2010/323509

Google Scholar

[25] O. Amadine, Y. Essamlali, A. Fihri, M. Larzek, and M. Zahouily, Effect of calcination temperature on the structure and catalytic performance of copper-ceria mixed oxide catalysts in phenol hydroxylation, RSC Adv. 7 (2017) 12586–12597.

DOI: 10.1039/c7ra00734e

Google Scholar

[26] I. E. Anderson, R. A. Shircliff, C. MacAuley, D. K. Smith, B. G. Lee, S. Agarwal, P. Stradins and R. T. Collins, J. Phys. Chem, 116 (2012) 3979–3987.

DOI: 10.1021/jp211569a

Google Scholar

[27] K. A. Shah, J. K. Parikh, B. Z. Dholakiya and K. C. Maheria, Fatty acid methyl ester production from acid oil using silica sulfuric acid: process optimization and reaction kinetics, Chem. Pap, 68 (2014) 472–483.

DOI: 10.2478/s11696-013-0488-4

Google Scholar

[28] A. Gaber, M. A. Abdel- Rahim, A. Y. Abdel-Latief, and M. N. Abdel-Salam, Influence of calcination temperature on the structure and porosity of nanocrystalline SnO2 synthesized by a conventional precipitation method, Int. J. Electrochem. Sci. 9 (2014) 81–95.

DOI: 10.24297/jac.v12i11.4831

Google Scholar

[29] M. Rahmati, B. Huang, M. K. Mortensen, K. Keyvanloo, T. H. Fletcher, B. F. Woodfield, W. C. Hecker and M. D. Argyle, Effect of different alumina supports on performance of cobalt Fischer-Tropsch catalysts, J. Catal. 359 (2018) 92–100.

DOI: 10.1016/j.jcat.2017.12.022

Google Scholar

[30] W. Zhang, C. Li, Z. Ma, L. Yang and H. He, Photocatalyst prepared using sol-gel method, J. Adv. Oxid. Technol. 19 (2016) 119–124.

Google Scholar

[31] S. Pourjafar, J. Kreft, H. Bilek, E. Kozliak and W. Seames, Exploring large pore size alumina and silica-alumina based catalysts for decomposition of lignin, AIMS Energy. 6 (2018) 993–1008.

DOI: 10.3934/energy.2018.6.993

Google Scholar

[32] Y. Zhang, Y. Tao, J. Huang and P. Williams, Influence of silica–alumina support ratio on H2 production and catalyst carbon deposition from the Ni-catalytic pyrolysis/reforming of waste tyres, Waste Manag. and Res. 35 (2017) 1045–1054.

DOI: 10.1177/0734242x17722207

Google Scholar

[33] B. M. Weckhuysen and I. E. Wachs, Catalysis by supported metal oxides. Handbook of Surfaces and Interfaces of Materials, Academic Press, 2001, p.613–648.

DOI: 10.1016/b978-012513910-6/50018-9

Google Scholar

[34] Information on http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-85216.

Google Scholar