Optimization of the Microwave Assisted Extraction of Anthocyanin from Violet Glutinous Rice (Oryza sativa) and its Antioxidant Activities

Article Preview

Abstract:

The application of natural pigments like anthocyanin carries substantial implications in various industries due to their health benefits, including antioxidant abilities, limiting resistance reduction and anti-inflammatory activities. This study extracted anthocyanin from violet glutinous rice (VGC) by microwave-assisted extraction (MAE). The process was optimized concerning different extracting parameters such as solvent concentration (H2O, Ethanol 50, 60, and 70%), material-to-solvent ratio (1/5, 1/10, 1/15, 1/20), microwave power (100, 200, 300W) and microwave support time (3, 5, 7, 10 min). Moreover, the antioxidant property of the obtained anthocyanin was investigated using the DPPH (2.2-diphenylpicrylhydrazyl) and ABTS (2,2-azinobis [3-ethylbenzothiazoline- 6-sulphonic acid]) assays. The highest anthocyanin content, 1.572 mg/g, was achieved at the following conditions: 50% ethanol, the solid/liquid ratio (1:10 mL/g), extraction time (5 min), and microwave power (100W). The antioxidant activity of the ethanol extract of violet glutinous rice with values IC50 was achieved at 93.18 µg/ml, and 32.66 µg/ml for DPPH and ABTS scavenging activity, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1077)

Pages:

175-181

Citation:

Online since:

December 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Guo, J. Zhang, J. Hu, X. Li, X. Du, Carbohydr. Polym., 128, 154-62 (2015).

Google Scholar

[2] T. Murata, T. Akazawa, Arch. Biochem. Biophys., 114, 604-609 (1966).

Google Scholar

[3] A.R.C. Braga, D.C. Murador, L.M.S. Mesquita, V.V. Rosso, J Food Compost Anal., 68, 1-9 (2018).

Google Scholar

[4] P. Ongkowijoyo, D.A. Luna-Vital, E.G. Food Chem., 250, 113-26 (2018).

Google Scholar

[5] C.H. Chan, R. Yusoff, G.C. Ngoh, F.W.L. Kung, J. Chromatogr. A, 1218, 6213-25 (2011).

Google Scholar

[6] T.T. Hien, N.P.T. Nhan, D.T. Nguyen, V.T.T. Ho, L.G. Bach, Solid State Phenom., 279, 217-221 (2018).

Google Scholar

[7] T.N. Pham, D.C. Nguyen, T.D. Lam, V.T. Pham, X.T. Le, H.V. Quang, T.D. Nguyen and L.G. Bach, IOP Conf. Ser.: Mater. Sci. Eng. 542 012032 (2019).

DOI: 10.1088/1757-899x/542/1/012032

Google Scholar

[8] T.N. Pham, X.T. Le, V.T. Pham and H.T. Le, Heliyon, 8 e09518 (2022).

Google Scholar

[9] Sharma, O.P., Bhat, T.K., Food Chem. 113, 1202–1205, (2009).

Google Scholar

[10] Nenadis, N., Wang, L.-F., Tsimidou, M., Zhang, H.-Y., J. Agric. Food Chem. 52, 4669–4674, (2004).

Google Scholar

[11] T.N. Pham, B.P. Tran, T.H. Tran, D.C. Nguyen, T.N.P. Nguyen, T.Q. Nguyen, D.V.N. Vo, X.T. Le, D.T. Nguyen, L.G. Bach, Vietnam, IOP Conf. Ser.: Mater. Sci. Eng., 479 (2019).

DOI: 10.1088/1757-899x/479/1/012012

Google Scholar

[12] T.B. Zou, M. Wang, R.Y. Gan, W.H. Ling, Int. J. Mol. Sci. 12, 3006–3017 (2011).

Google Scholar

[13] G.A.B. Canuto, D.R. Oliveira, L.S.M. Da Conceição, J.P.S. Farah, M.F.M. Tavares, Food Chem. 192, 566-574 (2016).

Google Scholar

[14] R.R. Montealegre, R.R. Peces, J.L.C. Vozmediano, J.M. Gascueña, E.G. Romero, J. Food Compos. Anal. 19, 687 (2006).

Google Scholar

[15] N. Pap, S. Beszédes, E. Pongrácz, L. Myllykoski, M. Gábor, E. Gyimes, C. Hodúr, R.L. Keiski, Marc Food Bioprocess Technol. 6, 2666-2674 (2013).

DOI: 10.1007/s11947-012-0964-9

Google Scholar

[16] C.S. Eskilsson, E. Björklund, L. Mathiasson, L. Karlsson, A. Torstensson, J. Chromatogr. A, 840, 59-70 (1999).

DOI: 10.1016/s0021-9673(99)00194-6

Google Scholar