Lignin-Derived Oil Palm Biomass Using Deep Eutectic Solvent

Article Preview

Abstract:

Deep Eutectic Solvent (DES) are eutectic mixes of hydrogen bond acceptors (HBA) and donors (HBD) with melting points significantly lower than their constituents. Choline chloride (ChCl) and glycerol were chosen as HBA and HBD because they are simple to prepare, have low toxicity, are biodegradable, and are environmentally friendly. As a result, the study aims to determine the feasibility of extracting lignin from oil palm fronds (OPF) and empty fruit bunches (EFB) using DES. The molar ratios of DESs were investigated to determine their effect on OPF solubility and lignin yield. The reaction is carried out at a solid loading ratio of 1:10, 150°C, and 6 hours. Because the DES medium induces homogeneous swelling and breakdown of small fibre fragments but not dissolution, both OPF and EFB are insoluble in DES. Small fragment disintegration suggests rapid dissolution, which will be easily dissolved in the DESs. The lignin yield and solubility of EFB and OPF in DESs are significantly reduced when the molar concentration of glycerol is increased. The highest lignin yields, 27.6% (EFB) and 16.1% (OPF) were obtained with a ChCl/glycerol molar ratio of 1:3. The comparatively low lignin yield achieved for both OPF and EFB is ascribed to the poor hydrogen bonding between the chloride ion and the hydroxyl group of the DES due to the low acidity of the DES. Despite this, lignin is extracted successfully due to the presence of chloride ions in ChCl, which target β-O-4 bonds and successfully cleave the ether bonds present in the lignin-carbohydrate linkage.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1077)

Pages:

145-151

Citation:

Online since:

December 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Gindl-Altmutter, C. Fürst, A. raj Mahendran, M. Obersriebnig, G. Emsenhuber, M. Kluge, S. Veigel, J. Keckes, F. Liebner, Electrically conductive kraft lignin-based carbon filler for polymers, Carbon 89 (2015) 161-168.

DOI: 10.1016/j.carbon.2015.03.042

Google Scholar

[2] T. L. Kelly-Yong, S. Lim, K. T. Lee, Gasification of oil palm Empty Fruit Bunch fibers in hot compressed water for synthesis gas production, J. Appl. Sci. 11 (2011) 3563–3570.

DOI: 10.3923/jas.2011.3563.3570

Google Scholar

[3] T. L. K. Yong, M. Yukihiko, Kinetic analysis of guaiacol conversion in sub- and supercritical water, Ind. Eng. Chem. Res. 52 (2013) 9048–9059.

DOI: 10.1021/ie4009748

Google Scholar

[4] T. L. K. Yong, Y. Matsumura, Reaction kinetics of the lignin conversion in supercritical water, Ind. Eng. Chem. Res. 51 (2012) 11975–11988.

DOI: 10.1021/ie300921d

Google Scholar

[5] K. A. Khalid, A. A. Ahmad, T. L.-K. Yong, Lignin Extraction from Lignocellulosic Biomass Using Sub- and Supercritical Fluid Technology as Precursor for Carbon Fiber Production, J. Japan Inst. Energy 96 (2017) 255–260.

DOI: 10.3775/jie.96.255

Google Scholar

[6] K. A. Khalid, V. Karunakaran, A. A. Ahmad, K. F. Pa'ee, N. Abd-Talib, and T. L. K. Yong, Lignin from oil palm frond under subcritical phenol conditions as a precursor for carbon fiber production, Malaysian J. Anal. Sci. 24 (2020) 484–494.

DOI: 10.1016/j.matpr.2020.01.252

Google Scholar

[7] V. Karunakaran, N. Abd-Talib, T. L. Kelly Yong, Lignin from oil palm empty fruit bunches (EFB) under subcritical phenol conditions as a precursor for carbon fiber production, Mater. Today Proc. 31 (2020) 100–105.

DOI: 10.1016/j.matpr.2020.01.252

Google Scholar

[8] D. Smink, A. Juan, B. Schuur, S. R. A. Kersten, Understanding the role of choline chloride in deep eutectic solvents used for biomass delignification, Ind. Eng. Chem. Res. 58 (2019) 16348–16357.

DOI: 10.1021/acs.iecr.9b03588

Google Scholar

[9] D. Yongzhuang Liu, W. Chen, Q. Xia, B. Guo, Q. Wang, S. Liu, Y. Liu, J. Li, H. Yu, Efficient cleavage of lignin–carbohydrate complexes and ultrafast extraction of lignin oligomers from wood biomass by microwave-assisted treatment with deep eutectic solvent, ChemSusChem 10 (2017)1692–1700.

DOI: 10.1002/cssc.201601795

Google Scholar

[10] K. H. Kim, T. Dutta, J. Sun, B. Simmons, S. Singh, Biomass pretreatment using deep eutectic solvents from lignin derived phenols, Green Chem. 20 (2018) 809–815.

DOI: 10.1039/c7gc03029k

Google Scholar

[11] T. Li, G. Lyu, Y. Liu, R. Lou, L.A. Lucia, G. Yang, J. Chen, H.A. Saeed, Deep eutectic solvents (DESs) for the isolation of willow lignin (salix matsudana cv. zhuliu), Int. J. Mol. Sci. 18 (2017) 2266.

DOI: 10.3390/ijms18112266

Google Scholar

[12] Q. Xia, Y. Liu, J. Meng, W. Cheng, W. Chen, S. Liu, Y. Liu, J. Li, H. Yu, Multiple hydrogen bond coordination in three-constituent deep eutectic solvents enhances lignin fractionation from biomass, Green Chem. 20 (2018) 2711–2721.

DOI: 10.1039/c8gc00900g

Google Scholar

[13] C. Alvarez-Vasco, R. Ma, M. Quintero, M. Guo, S. Geleynse, K.K. Ramasamy, M. Wolcott, X. Zhang, Unique low-molecular-weight lignin with high purity extracted from wood by deep eutectic solvents (DES): A source of lignin for valorization, Green Chem. 18 (2016) 5133–5141.

DOI: 10.1039/c6gc01007e

Google Scholar

[14] Y. T. Tan, G. C. Ngoh, A. S. M. Chua, Evaluation of fractionation and delignification efficiencies of deep eutectic solvents on oil palm empty fruit bunch, Ind. Crops Prod. 123 (2018) 271–277.

DOI: 10.1016/j.indcrop.2018.06.091

Google Scholar

[15] M. Francisco, A. Van Den Bruinhorst, M. C. Kroon, New natural and renewable low transition temperature mixtures (LTTMs): Screening as solvents for lignocellulosic biomass processing, Green Chem. 14 (2012) 2153–2157.

DOI: 10.1039/c2gc35660k

Google Scholar

[16] H. Malaeke, M. R. Housaindokht, H. Monhemi, M. Izadyar, Deep eutectic solvent as an efficient molecular liquid for lignin solubilization and wood delignification, J. Mol. Liq. 263 (2018) 193–199.

DOI: 10.1016/j.molliq.2018.05.001

Google Scholar

[17] Y. T. Tan, G. C. Ngoh, A. S. M. Chua, Effect of functional groups in acid constituent of deep eutectic solvent for extraction of reactive lignin, Bioresour. Technol. 281 (2019) 359–366.

DOI: 10.1016/j.biortech.2019.02.010

Google Scholar

[18] E. L. Smith, A. P. Abbott, K. S. Ryder, Deep eutectic solvents (DESs) and their applications, Chem. Rev. 114 (2014) 11060–11082.

DOI: 10.1021/cr300162p

Google Scholar

[19] Q. Zhang, K.D.O. Vigier, S. Royer, F. Jérôme, Deep eutectic solvents: Syntheses, properties and applications, Chem. Soc. Rev. 41 (2012) 7108–7146.

DOI: 10.1039/c2cs35178a

Google Scholar

[20] P. Kalhor, K. Ghandi, Deep eutectic solvents for pretreatment, extraction, and catalysis of biomass and food waste, Molecules 24 (2019) 4012.

DOI: 10.3390/molecules24224012

Google Scholar

[21] Z. Maugeri, P. Domínguez De María, Novel choline-chloride-based deep-eutectic-solvents with renewable hydrogen bond donors: Levulinic acid and sugar-based polyols, RSC Adv. 2 (2012) 421–425.

DOI: 10.1039/c1ra00630d

Google Scholar

[22] E. Abdulmalek, S. Zulkefli, M. Basyaruddin, A. Rahman, Deep eutectic solvent as a media in swelling and dissolution of oil palm trunk, Malaysian J. Anal. Sci. 21 (2017) 20-26.

DOI: 10.17576/mjas-2017-2101-03

Google Scholar

[23] C. Cuissinat, P. Navard, T. Heinze, Swelling and dissolution of cellulose. Part IV: Free floating cotton and wood fibres in ionic liquids, Carbohydr. Polym. 72, (2008) 590–596.

DOI: 10.1016/j.carbpol.2007.09.029

Google Scholar

[24] C. Li, C. Huang, Y. Zhao, C. Zheng, H. Su, L. Zhang, W. Luo, H. Zhao, S. Wang, L.J. Huang, Effect of choline-based deep eutectic solvent pretreatment on the structure of cellulose and lignin in bagasse, Processes 9 (2021) 384.

DOI: 10.3390/pr9020384

Google Scholar

[25] T. Kanbayashi, H. Miyafuji, Effect of ionic liquid treatment on the ultrastructural and topochemical features of compression wood in Japanese cedar (Cryptomeria japonica), Sci. Rep. 6 (2016) 1–8.

DOI: 10.1038/srep30147

Google Scholar

[26] A. Skulcova, A. Russ, M. Jablonsky, J. Sima, The pH behavior of seventeen deep eutectic solvents, Bioresources 3 (2018) 5042–5051.

DOI: 10.15376/biores.13.3.5042-5051

Google Scholar