Chemical and Foaming Analysis on Cold Mix Asphalt Performance with Recycled Asphalt Pavement

Article Preview

Abstract:

Cold-mix asphalt has been developed in recent years by combining foamed asphalt and recycled asphalt pavement (RAP). However, manufacturers struggled due to the less standardized specification. Foaming and mixing performance cannot be accurately controlled and are usually treated with a foaming agent (FA). This research focused on the relationship between the chemical composition of bitumen and its foaming properties. Three groups of AC-20 bitumen and organo-modified siloxanes based FA with water content of 1.5%, 2.0%, 2.5%, 3.0%, 3.5%, 4.0% and 4.5%. were analyzed. Chemical components of different bitumen types were evaluated using the Gaestel colloidal index (CI). The half-life (HL), expansion ratio (ER), Foam index (FI), and bubble surface area index (SAI) were used to evaluate the workability of the binders and discuss the effects of the values on the performance of the mixture. The CI observation revealed that FA obviously changed the saturates value and greatly improved the foam properties in terms of stability and expansion. FI change was found to be 71% of the change in the CI. Similarly, the resulting FI and SAI reach up to 88% in terms of correlation.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1077)

Pages:

257-264

Citation:

Online since:

December 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Day, D., Lancaster, I. M., & McKay, D. (2019). Emulsion cold mix asphalt in the UK: A decade of site and laboratory experience. Journal of Traffic and Transportation Engineering (English Edition), 6(4), 359-365 https://doi.org/10.1016/j.jtte.2019.05.002.

DOI: 10.1016/j.jtte.2019.05.002

Google Scholar

[2] Eller, A., & Olson, R. (2009). Recycled pavements using foamed asphalt in Minnesota (No. MN/RC 2009-09). Minnesota departement of transportation, Maplewood, MN.

Google Scholar

[3] Construction and Planning Agency Ministry of the Interior Taiwan CPAMI, 31 10 2019. [Online]. Available: cpami.gov.tw. [Accessed 10 7 2021].

Google Scholar

[4] Saleh, A., & Gáspár, L. (2021). Advantages and limitations of using foamed bitumen. Acta Technica Jaurinensis https://doi.org/10.14513/actatechjaur.00587, (2021).

DOI: 10.14513/actatechjaur.00587

Google Scholar

[5] Huang, M., Chen, H., Shi, X., & Wen, X. (2021). Foaming effect influence of PBT/ABS resin as a reducing agent in foamed asphalt. In IOP Conference Series: Materials Science and Engineering. IOP Publishing. Sanya, China Vol. 1028, No. 1, p.012010 https://doi.org/10.1088/1757-899X/1028/1/012010.

DOI: 10.1088/1757-899x/1028/1/012010

Google Scholar

[6] Ojum, C., & Thom, N. (2017). Effect of binder in recycled asphalt on cold-mix pavements. Proceedings of the Institution of Civil Engineers-Construction Materials, 170(4), 205-210 https://doi.org/10.1680/jcoma.16.00038.

DOI: 10.1680/jcoma.16.00038

Google Scholar

[7] Mugume, R. B. (2021). Investigation of Foamed Bitumen Mixes Using Reclaimed Asphalt Pavement Materials for Cold Recycling Technology. International Journal of Pavement Research and Technology, 1-13 https://doi.org/10.1007/s42947-021-00014-4.

DOI: 10.1007/s42947-021-00014-4

Google Scholar

[8] Xiao, F., Hou, X., Amirkhanian, S., & Kim, K. W. (2016). Superpave evaluation of higher RAP contents using WMA technologies. Construction and Building Materials, 112, 1080-1087 https://doi.org/10.1016/j.conbuildmat.2016.03.024.

DOI: 10.1016/j.conbuildmat.2016.03.024

Google Scholar

[9] Jenkins, K. J. (2000). Mix design considerations for cold and half-warm bituminous mixes with emphasis of foamed bitumen (Doctoral dissertation, Stellenbosch: Stellenbosch University).

Google Scholar

[10] Hasan, M. R. M., You, Z., Yin, H., You, L., & Zhang, R. (2019). Characterizations of foamed asphalt binders prepared using combinations of physical and chemical foaming agents. Construction and Building Materials, 204, 94-104 https://doi.org/10.1016/j.conbuildmat. 2019.01.156.

DOI: 10.1016/j.conbuildmat.2019.01.156

Google Scholar

[11] Bairgi, B. K., & Tarefder, R. A. (2017). A synthesis of asphalt foaming parameters and their association in foamed binder and mixture characteristics. In Airfield and Highway Pavements 2017 (pp.256-267) https://doi.org/10.1061/9780784480939.023.

DOI: 10.1061/9780784480939.023

Google Scholar

[12] Wirtgen (2010). Cold Recycling. Wirtgen cold recycling technology. Wirtgen, Germany.

Google Scholar

[13] Ozturk, H. I., & Kutay, M. E. (2014). Effect of foamed binder characteristics on warm mix asphalt (WMA) performance (No. 14-3953).

Google Scholar

[14] Jenkins, K. J., Van de Ven, M. F. C., & De Groot, J. L. A. (1999, August). Characterisation of foamed bitumen. In 7th Conference on asphalt pavements for Southern Africa (Vol. 18).

Google Scholar

[15] K Kar, S. S., Swamy, A. K., Tiwari, D., & Jain, P. K. (2020). Impact of Chemical Composition on Foaming Characteristics of Asphalt Binder. Journal of Transportation Engineering, Part B: Pavements, 146(3), 04020045 https://doi.org/10.1061/JPEODX.0000196.

DOI: 10.1061/jpeodx.0000196

Google Scholar

[16] Newcomb, D. E., Arambula, E., Yin, F., Zhang, J., Bhasin, A., Li, W., & Arega, Z. (2015). Properties of foamed asphalt for warm mix asphalt applications (No. Project 09-53).

DOI: 10.17226/22145

Google Scholar

[17] Hailesilassie, B. W., Hugener, M., & Partl, M. N. (2015). Influence of foaming water content on foam asphalt mixtures. Construction and Building Materials, 85, 65-77 https://doi.org/10.1016/j.conbuildmat.2015.03.071.

DOI: 10.1016/j.conbuildmat.2015.03.071

Google Scholar

[18] Saleh, M. F. (2007). Effect of rheology on the bitumen foamability and mechanical properties of foam bitumen stabilised mixes. International Journal of Pavement Engineering, 8(2), 99-110 https://doi.org/10.1080/10298430601149650.

DOI: 10.1080/10298430601149650

Google Scholar

[19] Ozturk, H. I., & Kutay, M. E. (2014). Sensitivity of nozzle-based foamed asphalt binder characteristics to foaming parameters. Transportation Research Record, 2444(1), 120-129 https://doi.org/10.3141/2444-14.

DOI: 10.3141/2444-14

Google Scholar

[20] Holý, M., & Remišová, E. (2019). Analysis of influence of bitumen composition on the properties represented by empirical and viscosity test. Transportation Research Procedia, 40, 34-41 https://doi.org/10.1016/j.trpro.2019.07.007.

DOI: 10.1016/j.trpro.2019.07.007

Google Scholar

[21] Carrera, V., García-Morales, M., Navarro, F. J., Partal, P., & Gallegos, C. (2010). Bitumen chemical foaming for asphalt paving applications. Industrial & engineering chemistry research, 49(18), 8538-8543 https://doi.org/10.1021/ie101136f, (2010).

DOI: 10.1021/ie101136f

Google Scholar

[22] Mangiafico, S., Di Benedetto, H., Sauzéat, C., Olard, F., Pouget, S., & Planque, L. (2016). Relations between linear ViscoElastic behaviour of bituminous mixtures containing reclaimed asphalt pavement and colloidal structure of corresponding binder blends. Procedia engineering, 143, 138-145 https://doi.org/10.1016/j.proeng.2016.06.018.

DOI: 10.1016/j.proeng.2016.06.018

Google Scholar

[23] Lesueur, D. (2009). The colloidal structure of bitumen: Consequences on the rheology and on the mechanisms of bitumen modification. Advances in colloid and interface science, 145(1-2), 42-82 https://doi.org/10.1016/j.cis.2008.08.011.

DOI: 10.1016/j.cis.2008.08.011

Google Scholar

[24] Yang, C., Xie, J., Wu, S., Amirkhanian, S., Zhou, X., Ye, Q., ... & Hu, R. (2020). Investigation of physicochemical and rheological properties of SARA components separated from bitumen. Construction and Building Materials, 235, 117437 https://doi.org/10.1016/j.conbuildmat. 2019.117437.

DOI: 10.1016/j.conbuildmat.2019.117437

Google Scholar

[25] Gaestel, C., Smadja, R., & Lamminan, K. A. (1971). Contribution à la connaissance des propriétés des bitumes routiers. Rev. Gentile. Routes et Aérodromes, 466, 85-94.

Google Scholar

[26] Ashoori, S., Sharifi, M., Masoumi, M., & Salehi, M. M. (2017). The relationship between SARA fractions and crude oil stability. Egyptian Journal of Petroleum, 26(1), 209-213 https://doi.org/10.1016/j.ejpe.2016.04.002.

DOI: 10.1016/j.ejpe.2016.04.002

Google Scholar

[27] Weigel, S., & Stephan, D. (2018). Relationships between the chemistry and the physical properties of bitumen. Road Materials and Pavement Design, 19(7), 1636-1650 https://doi.org/10.1080/14680629.2017.1338189.

DOI: 10.1080/14680629.2017.1338189

Google Scholar

[28] Lambert, M., Piau, J. M., Gaudefroy, V., Millien, A., Dubois, F., Petit, C., & Chaignon, F. (2018). Modeling of cold mix asphalt evolutive behaviour based on nonlinear viscoelastic spectral decomposition. Construction and Building Materials, 173, 403-410 https://doi.org/10.1016/j.conbuildmat.2018.03.207.

DOI: 10.1016/j.conbuildmat.2018.03.207

Google Scholar

[29] Jiang, C., Larter, S. R., Noke, K. J., & Snowdon, L. R. (2008). TLC–FID (Iatroscan) analysis of heavy oil and tar sand samples. Organic Geochemistry, 39(8), 1210-1214 https://doi.org/10.1016/j.orggeochem.2008.01.013.

DOI: 10.1016/j.orggeochem.2008.01.013

Google Scholar

[30] Eleyedath, A., Kar, S. S., & Swamy, A. K. (2021). Modelling of expansion ratio and half-life of foamed bitumen using gene expression programming. International Journal of Pavement Engineering, 22(3), 369-381 https://doi.org/10.1080/10298436.2019.1609675.

DOI: 10.1080/10298436.2019.1609675

Google Scholar

[31] Asphalt Academy. (2009). Technical guideline: Bitumen stabilised materials. A guide for the design and construction of bitumen emulsion and foamed bitumen stabilised materials.

DOI: 10.1201/9780203092989.ch112

Google Scholar

[32] MathWorks,MatlabR2019a".Available:https://www.mathworks.com/products.html,s_tid=gn_ps.

Google Scholar

[33] IBM, SPSS Statistic 22.0,, IBM, Available: www.ibm.com.

Google Scholar