Effects of Hydrolysis Ratio on the Structure and Adsorption Properties of Porous Starch

Article Preview

Abstract:

This study was carried out to investigate the effects of hydrolysis ratio on the structure and adsorption properties of porous starch. The starches with different hydrolysis ratios were prepared by enzymolysis (combination of α-amylase and glucoamylase), and its adsorption capacity was evaluated by using methylene blue (MB) and soybean oil as adsorption objects. The results suggest that crystallinity, specific surface area and adsorption capacity of porous starch were gradually improved with the increase of hydrolysis degree. The crystallinity of native starch was increased by enzymolysis from 28.43±0.23% to 34.70±0.69%, and the specific surface area was increased from 0.58±0.002 m2/g to 1.82±0.014 m2/g. Moreover, the adsorption capacity toward (MB) was increased from 2.88 mg/g to 3.87 mg/g at 25°C, which was accurately described by the pseudo-first-order kinetic model, and the oil absorption ratio was also greatly improved from 23.2±0.16% to 76.1±0.11%. Thus, the properties of porous starch can be adjusted by controlling the hydrolysis ratio to meet different needs in the market.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1080)

Pages:

19-25

Citation:

Online since:

January 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. H. Chen, Y. X. Wang, J. Liu, X. L. Xu. Int J Biol Macromol. 148 (2020) 1169-1181.

Google Scholar

[2] M. Lei, F. C. Jiang, J Cai, S. Hu, R. Zhou, G. Liu, Y. H. Wang, H. B. Wang, J. R. He, X.G. Xiong. Int J Biol Macromol. 111 (2018) 755-761.

Google Scholar

[3] Z. Hadisi, J. Nourmohammadi, J. Mohammadi. Ceram Int. 41 (2015) 10745-10754.

Google Scholar

[4] Y. B. Xiang, J. H. Han, G. Zhang, F. R. Zhan, D. Q. Cai, Z. Y. Wu. ACS Sustain Chem Eng. 6 (2018) 3649-3658.

Google Scholar

[5] C. Y. Xi, L. G. Zhu, Y. Zhuang, S. F. Wang, G. X. Sun, Y. Q. Liu, D. Q. Wang. Clin Appl Thromb-hem. 24 (2018) 279.

Google Scholar

[6] G. M. Glenn, A. P. Klamczynski, D. F. Woods, B. S. Chiou, W, J, Orts, S. H. Imam. J Agr Food Chem. 58 (2010) 4180-4184.

DOI: 10.1021/jf9037826

Google Scholar

[7] C Belingheri, A Ferrillo, E Vittadini. Lwt-food Sci Technol. 60 (2015) 593-597.

DOI: 10.1016/j.lwt.2014.09.047

Google Scholar

[8] C Belingheri, E Curti, A Ferrillo, E Vittadini. Food Funct. 3 (2012) 255-261.

DOI: 10.1039/c1fo10184f

Google Scholar

[9] Y. G. Xing, Q. L. Xu, Y Ma, Z. M. Che, Y. M. Cai, L Jiang. Food Funct. 5 (2014) 972-983.

Google Scholar

[10] Y. F. Wang, H. Ye, C. H. Zhou, F. X. Lv, X. M. Bie, Z. X. Lu. Eur Food Res Technol. 234 (2012) 157-163.

Google Scholar

[11] J. Z. Zhu, L. Zhong, W. X. Chen, Y. Z. Song, Z. M. Qian, X. Y. Cao, Q. Huang, B. Zhang, H. M. Cheng, W. J. Chen. Food Hydrocolloid. 95 (2019) 562-570.

Google Scholar

[12] J. C. Spada, L. D. F. Marczak, I. C. Tessaro, C. Pelayo, Z. Noreña. Int J Food Sci Tech. 47 (2012) 186-194.

Google Scholar

[13] G. Chen, B. Zhang. J Cereal Sci. 56 (2012) 316-320.

Google Scholar

[14] Y. Benaventgil, C. M. Rosell. Carbohyd Polym. 157 (2017) 533-540.

Google Scholar

[15] Y. S. Chen, S. R. Huang, Z. F. Tang, X. W. Chen, Z. F. Zhang. Carbohyd Polym. 85 (2011) 272-275.

Google Scholar

[16] A. Dura, W. Blaszczak, C. M. Rosell. Carbohyd Polym. 101 (2014) 837-845.

Google Scholar

[17] M. Majzoobi, S. Hedayati, A. Farahnaky. Food Biosci. 11 (2015) 79-84.

Google Scholar

[18] B Zhang, D. P. Cui, M. Z. Liu, H. H. Gong, Y. J. Huang, F. Han. Int J Biol Macromol. 50 (2012) 250-256.

Google Scholar

[19] G. L. Miller. Anal Chem. 31 (1959) 426-428.

Google Scholar

[20] L. Guo, G. Y. Li, J. S. Liu, Y. F. Meng, Y. F. Tang. Carbohyd Polym. 93 (2013) 374-379.

Google Scholar

[21] Y. Xie, M. N. Li, H. Q. Chen, B. Zhang. Food Chem. 274 (2019) 351-359.

Google Scholar

[22] S. Pérez, E. Bertoft. Starch‐Stärke. 62 (2010) 389-420.

Google Scholar

[23] Y. Jung, B. H. Lee, S. H. Yoo. Plos One. 12 (2017) e0181372.

Google Scholar

[24] S. Nara, T. Komiya. Starch‐Stärke. 35 (1983) 407-410.

Google Scholar

[25] W. Q. Wu, A. Q. Jiao, E. B. Xu, Y. Chen, Z. Y. Jin. Food Bioprocess Tech. 13 (2020) 442-451.

Google Scholar

[26] F. Gao, D. Li, C. Bi, Z. Mao, B. Adhikari. Dry Technol. 31 (2013) 1627-1634.

Google Scholar

[27] A. Q. Zhao, L. Yu, M. Yang, C. J. Wang, M. M. Wang, X. Bai. Food Hydrocolloid. 83 (2018) 465-472.

Google Scholar

[28] L. D. Lacerda, D. C. Leite, R. M. D. Soares, N. P. D. Silveira. Starch‐Stärke. 70 (2018) 1800008.

Google Scholar

[29] J. J. Zhu, W. Z. Sun, Z. Y. Meng, X. X. Zhu, H. Gan, R. L. Gu, Z. N. Wu, G. F. Dou. Int J Biol Macromol. 116 (2018) 707-714.

Google Scholar

[30] H. L. Wang, J. Lv, S. W. Jiang, B. C. Niu, M. Pang, S. T. Jiang. Starch‐Stärke. 68 (2016) 1254-1263.

Google Scholar

[31] W. R. Yao, H. Y. Yao. Starch‐Stärke. 54 (2002) 260-263.

Google Scholar

[32] L. Guo, G. Y. Li, J. S. Liu, Y. F. Meng, Y. F. Tang. Carbohyd Polym. 93 (2013) 374-379.

Google Scholar