[1]
Tong Z, Liu H, Ma J, et al. Investigating the Performance of a Super High-head Francis Turbine under Variable Discharge Conditions Using Numerical and Experimental Approach[J]. Energies (19961073), 2020, 13(15).
DOI: 10.3390/en13153868
Google Scholar
[2]
Larminie J, Dicks A, McDonald M S. Fuel cell systems explained[M]. Chichester, UK: J. Wiley, 2003. 2020, 3868. 2020;466:228311.
Google Scholar
[3]
Tong SG, Cheng ZW, Cong FY, Tong ZM, Zhang YD. Developing a grid-connected power optimization strategy for the integration of wind power with low temperature adiabatic compressed air energy storage[J]. Renewable Energy 2018; 125:73–86.
DOI: 10.1016/j.renene.2018.02.067
Google Scholar
[4]
Lee HE, Chung YS, Kim SS. Feasibility study on carbon-felt reinforced thermoplastic composite materials for PEMFC bipolar plates. Compos Struct 2017;180:378e85.
DOI: 10.1016/j.compstruct.2017.08.037
Google Scholar
[5]
Lee D, Choe J, Nam S, Lim JW, Choi I, Lee DG. Development ofnon-woven carbon felt composite bipolar plates using the soft layer method. Compos Struct 2017;160:976e82.
DOI: 10.1016/j.compstruct.2016.10.107
Google Scholar
[6]
Linjun Li, Shixue Wang, Like Yue, Guozhuo Wang.Cold-start icing characteristics of proton-exchange membrane fuel cells[J].International Journal of Hydrogen Energy, 44, 2019; 12033-12042.
DOI: 10.1016/j.ijhydene.2019.03.115
Google Scholar
[7]
Hamilton PJ, Pollet BG. Polymer electrolyte membrane fuel cell (PEMFC) flow field plate: Design, materials and characterisation. Fuel Cells 2010; 10(4):489–509.
DOI: 10.1002/fuce.201000033
Google Scholar
[8]
Mehta V, Cooper JS. Review and analysis of PEM fuel cell design and manufacturing. Journal of Power Sources 2003; 114(1):32–53.
DOI: 10.1016/s0378-7753(02)00542-6
Google Scholar
[9]
Müller A, Kauranen P, Ganski A, Hell B. Injection moulding of graphite composite bipolar plates. Journal of Power Sources 2006; 154(2):467–471.
DOI: 10.1016/j.jpowsour.2005.10.096
Google Scholar
[10]
Middelman E, Kout W, Vogelaar B, Lenssen J, Waal ED. Bipolar plates for PEM fuel cells. Journal of Power Sources 2003; 118(1-2):44–46.
DOI: 10.1016/s0378-7753(03)00070-3
Google Scholar
[11]
Antunes R, Ade Oliveira MCL, Ett G, Ett V. Carbon materials in composite bipolar plates for polymer electrolyte membrane fuel cells: A review of the main challenges to improve electrical performance. Journal of Power Sources 2011; 196(6):2945–2961.
DOI: 10.1016/j.jpowsour.2010.12.041
Google Scholar
[12]
Zhang Q, Tong Z, Tong S, et al. Research on water and heat management in the cold start process of proton exchange membrane fuel cell with expanded graphite bipolar plate[J]. Energy Conversion and Management, 2021, 233: 113942.
DOI: 10.1016/j.enconman.2021.113942
Google Scholar
[13]
Zhang Q, Tong Z, Tong S. Effect of cathode recirculation on high potential limitation and self-humidification of hydrogen fuel cell system[J]. Journal of Power Sources, 2020, 468: 228388.
DOI: 10.1016/j.jpowsour.2020.228388
Google Scholar
[14]
Peng L, Hu P, Lai X, Mei D, Ni J. Investigation of micro/meso sheet soft punch stamping process e simulation and experiments. Mater Des 2009;30:783e90.
DOI: 10.1016/j.matdes.2008.05.074
Google Scholar
[15]
Hu Q, Zhang D, Fu H, Huang K. Investigation of stamping process of metallic bipolar plates in PEM fuel celldnumerical simulation and experiments. Int J Hydrogen Energy 2014;39:13770e6.
DOI: 10.1016/j.ijhydene.2014.01.201
Google Scholar
[16]
Koc M, Mahabunphachai S, Dundar F. PEMFC metallic bipolar plates: effect of manufacturing method on corrosion resistance. ECS Trans 2009;25:1773e82.
DOI: 10.1149/1.3210733
Google Scholar
[17]
Jin CK, Koo JY, Kang CG. Fabrication of stainless steel bipolar plates for fuel cells using dynamic loads for the stamping process and performance evaluation of a single cell. Int J Hydrogen Energy 2014;39:21461e9.
DOI: 10.1016/j.ijhydene.2014.04.103
Google Scholar
[18]
Singh R S, Gautam A, Rai V. Graphene-based bipolar plates for polymer electrolyte membrane fuel cells[J]. Frontiers of Materials Science, 2019, 13(3): 217-241.
DOI: 10.1007/s11706-019-0465-0
Google Scholar
[19]
Phuangngamphan M, Okhawilai M, Hiziroglu S, et al. Development of highly conductive graphite‐/graphene‐filled polybenzoxazine composites for bipolar plates in fuel cells[J]. Journal of Applied Polymer Science, 2019, 136(11): 47183.
DOI: 10.1002/app.47183
Google Scholar
[20]
Dweiri R, Suherman H, Sulong A B, et al. Structure-property-processing investigation of electrically conductive polypropylene nanocomposites[J]. Science and Engineering of Composite Materials, 2018, 25(6): 1177-1186.
DOI: 10.1515/secm-2017-0122
Google Scholar
[21]
Chen, H.; Liu, H. B.; Xia, X. H.; Yang, L.; He, Y. D. Acta Mater. Compos. Sin. 2015, 32, 744.
Google Scholar
[22]
Antunes R A, De Oliveira M C L, Ett G, et al. Carbon materials in composite bipolar plates for polymer electrolyte membrane fuel cells: A review of the main challenges to improve electrical performance[J]. Journal of Power Sources, 2011, 196(6): 2945-2961.
DOI: 10.1016/j.jpowsour.2010.12.041
Google Scholar
[23]
Radzuan N A M, Zakaria M Y, Sulong A B, et al. The effect of milled carbon fibre filler on electrical conductivity in highly conductive polymer composites[J]. Composites Part B: Engineering, 2017, 110: 153-160.
DOI: 10.1016/j.compositesb.2016.11.021
Google Scholar
[24]
Yin Q, Sun K, Li A, et al. Study on carbon nanotube reinforced phenol formaldehyde resin/graphite composite for bipolar plate[J]. Journal of power sources, 2008, 175(2): 861-865.
DOI: 10.1016/j.jpowsour.2007.10.013
Google Scholar
[25]
Athmouni N, Mighri F, Elkoun S. Surface modification of multiwall carbon nanotubes and its effect on mechanical and through‐plane electrical resistivity of PEMFC bipolar plate nanocomposites[J]. Polymers for Advanced Technologies, 2018, 29(1): 294-301.
DOI: 10.1002/pat.4114
Google Scholar
[26]
Park H J, Woo J S, Kim S H, et al. High-performance fluorinated ethylene-propylene/graphite composites interconnected with single-walled carbon nanotubes[J]. Macromolecular Research, 2019, 27(11): 1161-1166.
DOI: 10.1007/s13233-019-7156-7
Google Scholar
[27]
Senis E C, Golosnoy I O, Andritsch T, et al. The influence of graphene oxide filler on the electrical and thermal properties of unidirectional carbon fiber/epoxy laminates: Effect of out‐of‐plane alignment of the graphene oxide nanoparticles[J]. Polymer Composites, 2020, 41(9): 3510-3520. [28] Alo O A, Otunniyi I O, Pienaar H C Z. Development of graphite‐filled polymer blends for application in bipolar plates[J]. Polymer Composites, 2020, 41(8): 3364-3375.
DOI: 10.1002/pc.25637
Google Scholar