Carbon Black Doped Graphite Composite Bipolar Plate Compounds for Improving Conductivity

Article Preview

Abstract:

Bipolar plates are a key part of fuel cells. The optimal hot press temperature, pressure, and time were determined in this study. The press condition can directly affect the relative density, thereby improving the conductivity and mechanical property. Several carbon black doped samples were also successfully prepared on the basis of the optimized preparation method. Results show that carbon black optimized the conductivity due to the “conduction bridge”. The maximum conductivity and bending strength reached 345 S/cm and 32.5 MPa, respectively. Key words: fuel cells; bipolar plate; graphite; composite materials.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1080)

Pages:

3-17

Citation:

Online since:

January 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Tong Z, Liu H, Ma J, et al. Investigating the Performance of a Super High-head Francis Turbine under Variable Discharge Conditions Using Numerical and Experimental Approach[J]. Energies (19961073), 2020, 13(15).

DOI: 10.3390/en13153868

Google Scholar

[2] Larminie J, Dicks A, McDonald M S. Fuel cell systems explained[M]. Chichester, UK: J. Wiley, 2003. 2020, 3868. 2020;466:228311.

Google Scholar

[3] Tong SG, Cheng ZW, Cong FY, Tong ZM, Zhang YD. Developing a grid-connected power optimization strategy for the integration of wind power with low temperature adiabatic compressed air energy storage[J]. Renewable Energy 2018; 125:73–86.

DOI: 10.1016/j.renene.2018.02.067

Google Scholar

[4] Lee HE, Chung YS, Kim SS. Feasibility study on carbon-felt reinforced thermoplastic composite materials for PEMFC bipolar plates. Compos Struct 2017;180:378e85.

DOI: 10.1016/j.compstruct.2017.08.037

Google Scholar

[5] Lee D, Choe J, Nam S, Lim JW, Choi I, Lee DG. Development ofnon-woven carbon felt composite bipolar plates using the soft layer method. Compos Struct 2017;160:976e82.

DOI: 10.1016/j.compstruct.2016.10.107

Google Scholar

[6] Linjun Li, Shixue Wang, Like Yue, Guozhuo Wang.Cold-start icing characteristics of proton-exchange membrane fuel cells[J].International Journal of Hydrogen Energy, 44, 2019; 12033-12042.

DOI: 10.1016/j.ijhydene.2019.03.115

Google Scholar

[7] Hamilton PJ, Pollet BG. Polymer electrolyte membrane fuel cell (PEMFC) flow field plate: Design, materials and characterisation. Fuel Cells 2010; 10(4):489–509.

DOI: 10.1002/fuce.201000033

Google Scholar

[8] Mehta V, Cooper JS. Review and analysis of PEM fuel cell design and manufacturing. Journal of Power Sources 2003; 114(1):32–53.

DOI: 10.1016/s0378-7753(02)00542-6

Google Scholar

[9] Müller A, Kauranen P, Ganski A, Hell B. Injection moulding of graphite composite bipolar plates. Journal of Power Sources 2006; 154(2):467–471.

DOI: 10.1016/j.jpowsour.2005.10.096

Google Scholar

[10] Middelman E, Kout W, Vogelaar B, Lenssen J, Waal ED. Bipolar plates for PEM fuel cells. Journal of Power Sources 2003; 118(1-2):44–46.

DOI: 10.1016/s0378-7753(03)00070-3

Google Scholar

[11] Antunes R, Ade Oliveira MCL, Ett G, Ett V. Carbon materials in composite bipolar plates for polymer electrolyte membrane fuel cells: A review of the main challenges to improve electrical performance. Journal of Power Sources 2011; 196(6):2945–2961.

DOI: 10.1016/j.jpowsour.2010.12.041

Google Scholar

[12] Zhang Q, Tong Z, Tong S, et al. Research on water and heat management in the cold start process of proton exchange membrane fuel cell with expanded graphite bipolar plate[J]. Energy Conversion and Management, 2021, 233: 113942.

DOI: 10.1016/j.enconman.2021.113942

Google Scholar

[13] Zhang Q, Tong Z, Tong S. Effect of cathode recirculation on high potential limitation and self-humidification of hydrogen fuel cell system[J]. Journal of Power Sources, 2020, 468: 228388.

DOI: 10.1016/j.jpowsour.2020.228388

Google Scholar

[14] Peng L, Hu P, Lai X, Mei D, Ni J. Investigation of micro/meso sheet soft punch stamping process e simulation and experiments. Mater Des 2009;30:783e90.

DOI: 10.1016/j.matdes.2008.05.074

Google Scholar

[15] Hu Q, Zhang D, Fu H, Huang K. Investigation of stamping process of metallic bipolar plates in PEM fuel celldnumerical simulation and experiments. Int J Hydrogen Energy 2014;39:13770e6.

DOI: 10.1016/j.ijhydene.2014.01.201

Google Scholar

[16] Koc M, Mahabunphachai S, Dundar F. PEMFC metallic bipolar plates: effect of manufacturing method on corrosion resistance. ECS Trans 2009;25:1773e82.

DOI: 10.1149/1.3210733

Google Scholar

[17] Jin CK, Koo JY, Kang CG. Fabrication of stainless steel bipolar plates for fuel cells using dynamic loads for the stamping process and performance evaluation of a single cell. Int J Hydrogen Energy 2014;39:21461e9.

DOI: 10.1016/j.ijhydene.2014.04.103

Google Scholar

[18] Singh R S, Gautam A, Rai V. Graphene-based bipolar plates for polymer electrolyte membrane fuel cells[J]. Frontiers of Materials Science, 2019, 13(3): 217-241.

DOI: 10.1007/s11706-019-0465-0

Google Scholar

[19] Phuangngamphan M, Okhawilai M, Hiziroglu S, et al. Development of highly conductive graphite‐/graphene‐filled polybenzoxazine composites for bipolar plates in fuel cells[J]. Journal of Applied Polymer Science, 2019, 136(11): 47183.

DOI: 10.1002/app.47183

Google Scholar

[20] Dweiri R, Suherman H, Sulong A B, et al. Structure-property-processing investigation of electrically conductive polypropylene nanocomposites[J]. Science and Engineering of Composite Materials, 2018, 25(6): 1177-1186.

DOI: 10.1515/secm-2017-0122

Google Scholar

[21] Chen, H.; Liu, H. B.; Xia, X. H.; Yang, L.; He, Y. D. Acta Mater. Compos. Sin. 2015, 32, 744.

Google Scholar

[22] Antunes R A, De Oliveira M C L, Ett G, et al. Carbon materials in composite bipolar plates for polymer electrolyte membrane fuel cells: A review of the main challenges to improve electrical performance[J]. Journal of Power Sources, 2011, 196(6): 2945-2961.

DOI: 10.1016/j.jpowsour.2010.12.041

Google Scholar

[23] Radzuan N A M, Zakaria M Y, Sulong A B, et al. The effect of milled carbon fibre filler on electrical conductivity in highly conductive polymer composites[J]. Composites Part B: Engineering, 2017, 110: 153-160.

DOI: 10.1016/j.compositesb.2016.11.021

Google Scholar

[24] Yin Q, Sun K, Li A, et al. Study on carbon nanotube reinforced phenol formaldehyde resin/graphite composite for bipolar plate[J]. Journal of power sources, 2008, 175(2): 861-865.

DOI: 10.1016/j.jpowsour.2007.10.013

Google Scholar

[25] Athmouni N, Mighri F, Elkoun S. Surface modification of multiwall carbon nanotubes and its effect on mechanical and through‐plane electrical resistivity of PEMFC bipolar plate nanocomposites[J]. Polymers for Advanced Technologies, 2018, 29(1): 294-301.

DOI: 10.1002/pat.4114

Google Scholar

[26] Park H J, Woo J S, Kim S H, et al. High-performance fluorinated ethylene-propylene/graphite composites interconnected with single-walled carbon nanotubes[J]. Macromolecular Research, 2019, 27(11): 1161-1166.

DOI: 10.1007/s13233-019-7156-7

Google Scholar

[27] Senis E C, Golosnoy I O, Andritsch T, et al. The influence of graphene oxide filler on the electrical and thermal properties of unidirectional carbon fiber/epoxy laminates: Effect of out‐of‐plane alignment of the graphene oxide nanoparticles[J]. Polymer Composites, 2020, 41(9): 3510-3520. [28] Alo O A, Otunniyi I O, Pienaar H C Z. Development of graphite‐filled polymer blends for application in bipolar plates[J]. Polymer Composites, 2020, 41(8): 3364-3375.

DOI: 10.1002/pc.25637

Google Scholar