[1]
V.O. Startsev, V.I. Plotnikov, Yu.V. Antipov, Reversible influence of moisture on the mechanical properties of pcm after weathering, Trudy VIAM. 65 (2018) 110-118.
Google Scholar
[2]
A.N. Blaznov, A.S. Krotov, M.E. Zhurkovsky, D.E. Zimin, V.V. Samoilenko, V.V. Firsov, Diffusion of moisture in basalt plastics, Polzunovsky Bulletin. 4 (2019) 90-95.
Google Scholar
[3]
Y. Fan, A. Gomez, S. Ferraro, B. Pinto, A. Muliana, V.La. Saponara, Diffusion of water in glass fiber reinforced polymer composites at different temperatures, Composite Materials. 53 (2019) 1097–1110.
DOI: 10.1177/0021998318796155
Google Scholar
[4]
S. Yang, W. Liu, Y. Fang, R. Huo, Influence of hygrothermal aging on the durability and interfacial performance of pultruded glass fiber-reinforced polymer composites, Materials Science. 63 (2019) 2102–2121.
DOI: 10.1007/s10853-018-2944-6
Google Scholar
[5]
T. Glaskova-Kuzmina, A. Zotti, A. Borriello, M. Zarrelli, A. Aniskevich, Basalt Fibre Composite with Carbon Nanomodified Epoxy Matrix under Hydrothermal Ageing, Polymers. 13 (2021) 532-534.
DOI: 10.3390/polym13040532
Google Scholar
[6]
C.M. Rocha, S. Raijmaekers, F.P. Nijssen, L.J. Sluys, Hygrothermal ageing behaviour of a glass/epoxy composite used in wind turbine blades, Composite Structures. 174 (2017) 110-122.
DOI: 10.1016/j.compstruct.2017.04.028
Google Scholar
[7]
K. Wang, Y. Chen, H. Long, M. Baghani, Y. Rao, Y. Peng, Hygrothermal aging effects on the mechanical properties of 3D printed composites with different stacking sequence of continuous glass fiber layers, Polymer Testing. 100 (2021) 107-242.
DOI: 10.1016/j.polymertesting.2021.107242
Google Scholar
[8]
O.V. Startsev, M.P. Lebedev, A.K. Kychkin, Aging of polymer composites in extremely cold climates, Izvestiya AltGU, Fizika. 1 (2020) 41-51.
DOI: 10.14258/izvasu(2020)1-06
Google Scholar
[9]
A.V. Slavin, O.V. Startsev, Properties of aircraft glassand carbonfibers reinforced plastics at the early stage of natural weathering, Trudy VIAM. 9 (2018) 71-82.
DOI: 10.18577/2307-6046-2018-0-9-71-82
Google Scholar
[10]
A.A. Evdokimov, A.P. Petrov, K.A. Pavlovsky, I.N. Gulyaev, The influence of climatic ageing on the properties of pcm-based epoxy resin systems, Trudy VIAM. 3 (2021) 128-136.
Google Scholar
[11]
M.A. El-baky, M. Attia, Flexural fatigue performance of hybrid composite laminates based on E-glass and polypropylene fibers, Thermoplastic Composite Materials. 32 (2018) 228-247.
DOI: 10.1177/0892705717751020
Google Scholar
[12]
P. Morampudi, K.K. Namala, Y.K. Gajjela, M. Barath, G. Prudhvi, Review on glass fiber reinforced polymer composites, Materials Today: Proceedings. 43 (2021) 314-319.
DOI: 10.1016/j.matpr.2020.11.669
Google Scholar
[13]
Wei Hu, Centea Timotei, Nutt Steven, Effects of material and process parameters on void evolution in unidirectional prepreg during vacuum bag-only cure, Composite Materials. 54 (2020) 633–645.
DOI: 10.1177/0021998319864420
Google Scholar
[14]
D.K. Rajak, D.D. Pagar, P.L. Menezes, E. Linul, Fiber-reinforced polymer composites: manufacturing, Properties, and Applications, Polymers. 11 (2019) 1667-1668.
DOI: 10.3390/polym11101667
Google Scholar
[15]
V.E. Bakhareva, A.S. Oryshchenko, High-strength fiberglass plastics for arctic engineering, SPb, 2017, p.224.
Google Scholar
[16]
G.G. Vinokurov, N.F. Struchkov, A.K. Kychkin, M.P. Lebedev, Statistical description of porosity formation in basalt-plastic composite materials under climatic tests, Chemical Engineering. 7 (2020) 317-324.
DOI: 10.1134/s0040579521050183
Google Scholar