Materials for the Needs of Agriculture Based on Biopolymers: A Comparative Analysis of Physical and Mechanical Properties

Article Preview

Abstract:

Today, biodegradable polymers are used to obtain various functional materials, including for the needs of agriculture. The article describes the current state of the production of polymeric materials, the problems of their operation, as well as the prospects for the creation of new polymeric biodegradable materials for agriculture. It is found that, depending on the method of obtaining a biopolymer-based material, its ability to diffuse water and water absorption is different – non-woven materials have higher performance than film materials. After seed germination, the thermophysical characteristics of the polylactide-based material change, the degree of crystallinity decreases by 7-10%, which indicates the destruction of the crystalline phase.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1082)

Pages:

127-132

Citation:

Online since:

March 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Rajeshkumar, S. Arvindh Seshadri, G.L. Devnani, M.R. Sanjay, Suchart Siengchin, J. Prakash Maran, Naif Abdullah Al-Dhabi, Ponmurugan Karuppiah, Valan Arasu Mariadhas, N. Sivarajasekarf, Environment friendly, renewable and sustainable poly lactic acid (PLA) based natural fiber reinforced composites – A comprehensive review, Journal of Cleaner Production. Vol. 310 (2021) 127483.

DOI: 10.1016/j.jclepro.2021.127483

Google Scholar

[2] Kotiba Hamada, Mosab Kaseemb, Muhammad Ayyoob, Jinho Joo, Fawaz Deri, Polylactic acid blends: The future of green, light and tough, Progress in Polymer Science. Vol. 85 (2018) pp.83-127.

DOI: 10.1016/j.progpolymsci.2018.07.001

Google Scholar

[3] M.V. Podzorova, A.A. Popov, Y.V. Tertyshnaya, Environmentally friendly films based on poly(3-hydroxybutyrate) and poly(lactic acid): a review, Russian Journal of Physical Chemistry B. Т. 8, № 5 (2014) 726-732.

DOI: 10.1134/s1990793114050078

Google Scholar

[4] Y. Tertyshnaya, M. Podzorova, M. Moskovskiy, Impact of water and UV irradiation on nonwoven polylactide/natural rubber fiber, Polymers. 13(3) (2021) 1-10, 461.

DOI: 10.3390/polym13030461

Google Scholar

[5] D. da Silva, M. Kaduri, M. Poley, O. Adir, N. Krinsky, J. Shainsky-Roitman et al. Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems, Chem Eng J. 340 (2018) 9–14.

DOI: 10.1016/j.cej.2018.01.010

Google Scholar

[6] A. Shebi, S. Lisa, Pectin mediated synthesis of nano hydroxyapatite-decorated poly (lactic acid) honeycomb membranes for tissue engineering. Carbohydr Polym. 201 (2018) 39–47.

DOI: 10.1016/j.carbpol.2018.08.012

Google Scholar

[7] A.C. da Silva, T. Augusto, L.H. Andrade, S.I. Cordoba de Torresi, One pot biocatalytic synthesis of a biodegradable electroactive macromonomer based on 3,4-ethylenedioxytiophene and poly(l-lactic acid). Mater Sci Eng C Mater Biol Appl. 83 (2018) 35–43.

DOI: 10.1016/j.msec.2017.09.007

Google Scholar

[8] E. Al Tawil, A. Monnier, Q.T. Nguyen, B. Deschrevel, Microarchitecture of poly(lactic acid) membranes with an interconnected network of macropores and micropores influences cell behavior, Eur Polym J. 105 (2018) 370–388.

DOI: 10.1016/j.eurpolymj.2018.06.012

Google Scholar

[9] Y.V. Tertyshnaya, A.A. Popov, Hydrolytic degradation of polylactide in distilled water and seawater, Polym. Sci. Ser. D. 13(3) (2020) 306–310.

DOI: 10.1134/s1995421220030211

Google Scholar

[10] Y.V. Tertyshnaya, M.V. Podzorova, Effect of UV Irradiation on the Structural and Dynamic Characteristics of Polylactide and Its Blends with Polyethylene, Rus. J. Phys. Chem. B. 14 (2020) 167–175.

DOI: 10.1134/s1990793120010170

Google Scholar

[11] T. Ohkita, Thermal degradation and biodegradability of poly(lactic acid), corn starch biocomposites, Journal of Applied Polymer Science. № 100 (2006) 3009-3017.

DOI: 10.1002/app.23425

Google Scholar

[12] E.S. Trofimchuk, M.A. Moskvina, N.I. Nikonorova, A.V. Efimov, E.S. Garina, T.E. Grokhovskaya, O.A. Ivanova, A.V. Bakirov, N.G. Sedush Hydrolytic degradation of polylactide films deformed by the environmental crazing mechanism, European Polymer Journal. Vol. 139 (2020) 110000.

DOI: 10.1016/j.eurpolymj.2020.110000

Google Scholar

[13] Kim Hyong Su, KR 20120108147 (2011).

Google Scholar

[14] Park Seo Jin [Kr], Kim Dong Wook [Kr], Kr 20110139425 (2010).

Google Scholar

[15] Y. Wang, M.A. Hillmyer, Polyethylene-poly(L-lactide) diblock copolymers: synthesis and compatibilization of poly(L-lactide), polyethylene blends, J. Polym. Sci. A Polym. Chem. 39 (2001) 2755–2766.

DOI: 10.1002/pola.1254

Google Scholar

[16] K.S. Anderson, M.A. Hillmyer, The influence of block copolymer microstructure on the toughness of compatibilized polylactide/polyethylene blends, Polymer. 45 (2004) 8809–8823.

DOI: 10.1016/j.polymer.2004.10.047

Google Scholar

[17] N. Reddy, D. Nama, Y. Yang, Polylactic acid/polypropylene polyblend fibers for better resistance to degradation, Polym. Degrad. Stab. 93 (2008) 233–241.

DOI: 10.1016/j.polymdegradstab.2007.09.005

Google Scholar

[18] H.-S. Kim, H.-J. Kim, Miscibility and performance evaluation of natural-flour-filled PP/PBS and PP/PLA bio-composites, Fibers Polym. 14 (2013) 793–803.

DOI: 10.1007/s12221-013-0793-0

Google Scholar

[19] M.V. Podzorova, Y.V. Tertyshnaya, P.V. Pantyukhov, L.S. Shibryaeva, A.A. Popov, and S. Nikolaeva, AIP Conf. Proc. 1783 020185 (2016).

DOI: 10.1063/1.4966479

Google Scholar

[20] L.-T. Lim, R. Auras, M. Rubino, Prog. Polym. Sci. 33 820-852 (2008).

Google Scholar

[21] Q. Zhou, M. Xanthos, Polym. Degrad. Stab. 93 (8) 1450-1459 (2008).

Google Scholar

[22] M.V. Podzorova, Y.V. Tertyshnaya, P.V. Pantyukhov, L.S. Shibryaeva, A.A. Popov, and S. Nikolaeva, Influence of ultraviolet on polylactide degradation, in International Conference on Advanced Materials with Hierarchical Structure for New Technologies and Reliable Structures, AIP Conference Proceedings. 1909 (2017) 020173.

DOI: 10.1063/1.5013854

Google Scholar

[23] L.S. Shibryaeva, M.V. Podzorova, Yu.V. Tertyshnaya and M.E. Chaplygin Agricultural materials based on eco-friendly polymers, 2020 IOP Conf. Ser.: Mater. Sci. Eng. 971, 032022.

DOI: 10.1088/1757-899x/971/3/032022

Google Scholar