[1]
S. N. Monteiro, F. P. D. Lopes, A. S. Ferreira, and D. C. O. Nascimento, "Natural-fiber polymer-matrix composites: Cheaper, tougher, and environmentally friendly," Jom, vol. 61, no. 1, p.17–22, 2009.
DOI: 10.1007/s11837-009-0004-z
Google Scholar
[2]
S. Kalia, B. S. Kaith, and I. Kaur, "Pretreatments of natural fibers and their application as reinforcing material in polymer composites-A review," Polym. Eng. Sci., vol. 49, no. 7, p.1253–1272, Jul. 2009.
DOI: 10.1002/pen.21328
Google Scholar
[3]
M. Rajesh and J. Pitchaimani, "Dynamic mechanical analysis and free vibration behavior of intra-ply woven natural fiber hybrid polymer composite," J. Reinf. Plast. Compos., vol. 35, no. 3, p.228–242, 2016.
DOI: 10.1177/0731684415611973
Google Scholar
[4]
S. K. Nayak, S. Mohanty, and S. K. Samal, "Influence of short bamboo/glass fiber on the thermal, dynamic mechanical and rheological properties of polypropylene hybrid composites," Mater. Sci. Eng. A, vol. 523, no. 1–2, p.32–38, 2009.
DOI: 10.1016/j.msea.2009.06.020
Google Scholar
[5]
D. Sarkar, D. R. Chetry, R. Kumar, P. Borah, S. Samanta, and N. Teyi, "Study of Dry Sliding Wear Behaviour of Silicon Carbide Filled Glass-Jute Hybrid Epoxy Composite Using RSM and Taguchi Techniques," Mater. Sci. Forum, vol. 1060, p.37–42, May 2022.
DOI: 10.4028/p-a12iqf
Google Scholar
[6]
S. N. Monteiro, V. Calado, R. J. S. Rodriguez, and F. M. Margem, "Thermogravimetric stability of polymer composites reinforced with less common lignocellulosic fibers - An overview," J. Mater. Res. Technol., vol. 1, no. 2, p.117–126, 2012.
DOI: 10.1016/S2238-7854(12)70021-2
Google Scholar
[7]
S. N. Monteiro, F. P. D. Lopes, A. P. Barbosa, A. B. Bevitori, I. L. Amaral Da Silva, and L. L. Da Costa, "Natural lignocellulosic fibers as engineering materials-An overview," Metall. Mater. Trans. A Phys. Metall. Mater. Sci., vol. 42, no. 10, p.2963–2974, 2011.
DOI: 10.1007/s11661-011-0789-6
Google Scholar
[8]
M. Ali, A. Liu, H. Sou, and N. Chouw, "Mechanical and dynamic properties of coconut fibre reinforced concrete," Constr. Build. Mater., vol. 30, p.814–825, 2012.
DOI: 10.1016/j.conbuildmat.2011.12.068
Google Scholar
[9]
V. K. Thakur and M. K. Thakur, "Processing and characterization of natural cellulose fibers/thermoset polymer composites," Carbohydr. Polym., vol. 109, p.102–117, 2014.
DOI: 10.1016/j.carbpol.2014.03.039
Google Scholar
[10]
T. Deák and T. Czigány, "Chemical Composition and Mechanical Properties of Basalt and Glass Fibers: A Comparison," Text. Res. J., vol. 79, no. 7, p.645–651, May 2009.
DOI: 10.1177/0040517508095597
Google Scholar
[11]
C. Colombo, L. Vergani, and M. Burman, "Static and fatigue characterisation of new basalt fibre reinforced composites," Compos. Struct., vol. 94, no. 3, p.1165–1174, Feb. 2012.
DOI: 10.1016/j.compstruct.2011.10.007
Google Scholar
[12]
R. Parnas, M. T. Shaw, and Q. Liu, "Basalt fiber reinforced polymer composites," 2007.
Google Scholar
[13]
T. Czigány, "Basalt Fiber Reinforced Hybrid Polymer Composites," Mater. Sci. Forum, vol. 473–474, p.59–66, Jan. 2005.
DOI: 10.4028/www.scientific.net/MSF.473-474.59
Google Scholar
[14]
J. Sim, C. Park, and D. Y. Moon, "Characteristics of basalt fiber as a strengthening material for concrete structures," Compos. Part B Eng., vol. 36, no. 6–7, p.504–512, 2005.
DOI: 10.1016/j.compositesb.2005.02.002
Google Scholar
[15]
E. Þórhallsson, J. Erlendsson, and Ö. Erlendsson, Basalt fiber introduction. 2013.
Google Scholar
[16]
H. Jamshaid and R. Mishra, "A green material from rock: basalt fiber – a review," J. Text. Inst., vol. 107, no. 7, p.923–937, 2016.
DOI: 10.1080/00405000.2015.1071940
Google Scholar
[17]
A. Gopinath, M. S. Kumar, and A. Elayaperumal, "Experimental Investigations on Mechanical Properties Of Jute Fiber Reinforced Composites with Polyester and Epoxy Resin Matrices," Procedia Eng., vol. 97, p.2052–2063, 2014.
DOI: 10.1016/j.proeng.2014.12.448
Google Scholar
[18]
H. Bisaria, M. K. Gupta, P. Shandilya, and R. K. Srivastava, "Effect of Fibre Length on Mechanical Properties of Randomly Oriented Short Jute Fibre Reinforced Epoxy Composite," Mater. Today Proc., vol. 2, no. 4–5, p.1193–1199, 2015.
DOI: 10.1016/j.matpr.2015.07.031
Google Scholar
[19]
M. Sarikanat, "The Influence of Oligomeric Siloxane Concentration on the Mechanical Behaviors of Alkalized Jute/Modified Epoxy Composites," J. Reinf. Plast. Compos., vol. 29, no. 6, p.807–817, Mar. 2010.
DOI: 10.1177/0731684408100700
Google Scholar
[20]
J. Gassan and A. K. Bledzki, "The influence of fiber-surface treatment on the mechanical properties of jute-polypropylene composites," Compos. Part A Appl. Sci. Manuf., vol. 28, no. 12, p.1001–1005, 1997.
DOI: 10.1016/S1359-835X(97)00042-0
Google Scholar
[21]
R. A. Braga and P. A. A. Magalhaes, "Analysis of the mechanical and thermal properties of jute and glass fiber as reinforcement epoxy hybrid composites," Mater. Sci. Eng. C, vol. 56, p.269–273, 2015.
DOI: 10.1016/j.msec.2015.06.031
Google Scholar
[22]
L. Prasad, A. Saini, and V. Kumar, "Mechanical Performance of Jute and Basalt Fiber Geo-grid-Reinforced Epoxy Hybrid Composite Material," J. Nat. Fibers, vol. 18, no. 5, p.694–704, 2021.
DOI: 10.1080/15440478.2019.1645789
Google Scholar
[23]
P. Jagadeesh, Y. G. Thyavihalli Girijappa, M. Puttegowda, S. M. Rangappa, and S. Siengchin, "Effect of natural filler materials on fiber reinforced hybrid polymer composites: An Overview," J. Nat. Fibers, vol. 00, no. 00, p.1–16, 2020.
DOI: 10.1080/15440478.2020.1854145
Google Scholar
[24]
K. T. Faber, "CERAMIC COMPOSITE INTERFACES:Properties and Design," Annu. Rev. Mater. Sci., vol. 27, no. 1, p.499–524, Aug. 1997.
DOI: 10.1146/annurev.matsci.27.1.499
Google Scholar
[25]
S. Ratim, S. Ahmad, N. N. Bonnia, E. S. Ali, and J. A. Razak, "Tensile Behavior of SiCNP and MWCNTs Filled Toughened Epoxy Nanocomposites: A Comparative Study," Procedia Chem., vol. 19, p.228–233, 2016.
DOI: 10.1016/j.proche.2016.03.098
Google Scholar
[26]
G. R. Arpitha, M. R. Sanjay, L. L. Naik, and B. Yogesha, "Mechanical Properties of Epoxy Based Hybrid Composites Reinforced with Sisal / SIC / Glass Fibers," Ijergs, vol. 2, no. 5, p.398–405, 2014.
Google Scholar
[27]
C. D. Liyanage and M. Pieris, "A Physico-Chemical Analysis of Coconut Shell Powder," Procedia Chem., vol. 16, p.222–228, 2015.
DOI: 10.1016/j.proche.2015.12.045
Google Scholar
[28]
K. Mylsamy and I. Rajendran, "Influence of Fibre Length on the Wear Behaviour of Chopped Agave americana Fibre Reinforced Epoxy Composites," Tribol. Lett., vol. 44, no. 1, p.75–80, Oct. 2011.
DOI: 10.1007/s11249-011-9829-z
Google Scholar
[29]
P. R. Prasad, J. N. Prakash, L. H. Manjunath, and P. V. Reddy, "Physical and Wear Properties of UHMWPE Fabric Reinforced Epoxy Composites," Int. J. Automot. Mech. Eng., vol. 17, no. 1, p.7577–7586, Mar. 2020.
DOI: 10.15282/ijame.17.1.2020.07.0562
Google Scholar
[30]
S. Nunna, P. R. Chandra, S. Shrivastava, and A. Jalan, "A review on mechanical behavior of natural fiber based hybrid composites," J. Reinf. Plast. Compos., vol. 31, no. 11, p.759–769, Jun. 2012.
DOI: 10.1177/0731684412444325
Google Scholar
[31]
K. S. Ahmed and S. Vijayarangan, "Tensile, flexural and interlaminar shear properties of woven jute and jute-glass fabric reinforced polyester composites," J. Mater. Process. Technol., vol. 207, no. 1–3, p.330–335, Oct. 2008.
DOI: 10.1016/j.jmatprotec.2008.06.038
Google Scholar
[32]
K. S. Ahmed and S. Vijayarangan, "Tensile, flexural and interlaminar shear properties of woven jute and jute-glass fabric reinforced polyester composites," J. Mater. Process. Technol., vol. 207, no. 1–3, p.330–335, 2008.
DOI: 10.1016/j.jmatprotec.2008.06.038
Google Scholar