[1]
G.N. Tiwari, P. Saxena, K. Thakur, Thermal Analysis of Active Solar Distillation System, Energy Convers. Mgmt. 35 (1994) 51-59.
DOI: 10.1016/0196-8904(94)90081-7
Google Scholar
[2]
A.K. Bassam, Abu-Hijleh, Enhanced Solar Still Performance Using Water Film Cooling of the Glass Cover, Desalination. 107 (1996) 235-244.
DOI: 10.1016/s0011-9164(96)00165-8
Google Scholar
[3]
Meukam, D. Njomo, A. Gbane, Siaka Toure, Experimental Optimization of a Solar Still: Application to Alcohol Distillation, Chemical Engineering and Processing. 43 (2004) 1569-1577.
DOI: 10.1016/j.cep.2004.02.007
Google Scholar
[4]
V.S.V. Bapeshwararao, U. Singh, G.N. Tiwari, Transient Analysis of Double Basin Solar Still, Energy Convers. Mgmt. 23 (1983) 83-90.
DOI: 10.1016/0196-8904(83)90065-1
Google Scholar
[5]
S.A. Lawrence, S.P. Gupta, G.N. Tiwari, Effect of Heat Capacity on the Performance of Solar Still with Water Flow over the Glass Cover, Energy Convers. Mgmt. 30 (1990) 277-285.
DOI: 10.1016/0196-8904(90)90010-v
Google Scholar
[6]
Jenny Lindblom, Bo Nordell, Water Production by Underground Condensation of Humid Air, Desalination. 189 (2006) 248-260.
DOI: 10.1016/j.desal.2005.08.002
Google Scholar
[7]
M. Boukar, A. Harmim, Performance Evaluation of a One-Sided Vertical Solar Still Tested in the Desert of Algeria, Desalination. 183 (2005) 113-126.
DOI: 10.1016/j.desal.2005.02.045
Google Scholar
[8]
B. Selva Kumar, Sanjay Kumar, R. Jayaprakash, Performance Analysis of a "V" Type Solar Still Using a Charcoal Absorber and a Boosting Mirror, Desalination. 229 (2008) 217-230.
DOI: 10.1016/j.desal.2007.09.009
Google Scholar
[9]
G.N. Tiwari, Enhancement of Daily Yield in a Double Basin Solar Still, Energy Convers. Mgmt. 25 (1985) 49-50.
DOI: 10.1016/0196-8904(85)90068-8
Google Scholar
[10]
S.N. Raj, G.N. Tiwari, Single Basin Solar Still Coupled with Flat Plate Collector, Energy Convers. Mgmt. 23 (1983) 145-149.
DOI: 10.1016/0196-8904(83)90057-2
Google Scholar
[11]
N.K. Dhiman, G.N. Tiwari, Effect of Water Flowing Over the Glass Cover of a Multi–Wick Solar Still, Energy Convers. Mgmt. 30 (1990) 245-250.
DOI: 10.1016/0196-8904(90)90006-k
Google Scholar
[12]
G.N. Tiwari, Demonstration Plant of a Multi Wick Solar Still, Energy Convers. Mgmt. 24 (1984) 313-316.
DOI: 10.1016/0196-8904(84)90011-6
Google Scholar
[13]
G.N. Tiwari, S.B. Sharma, M.S. Sodha, Performance of a Double Condensing Multiple Wick Solar Still, Energy Convers. Mgmt. 24 (1984) 155-159.
DOI: 10.1016/0196-8904(84)90028-1
Google Scholar
[14]
R. Rathinam, M. Govindaraj, Photo Electro Catalytic Oxidation of Textile Industry Wastewater by RuO2/IrO2/TaO2 Coated Titanium Electrodes, Nature Environment and Pollution Technology. 20 (2020) 1069-1076.
DOI: 10.46488/nept.2021.v20i03.014
Google Scholar
[15]
B. Selvakumar, V. Shanmugapriya, K. Amudha, P. Periasamy, Enhanced Thermophysical Properties and Productive Yield of Pyramid Solar Still Combined with Shallow Solar Pond by Incorporating ZnO/Al2O3 Nanocomposites, Lecture Notes in Electrical Engineering. 881 (2022) 1121-1135.
DOI: 10.1007/978-981-19-1111-8_86
Google Scholar
[16]
S.L Suib, Porous Manganese Oxide Octahedral Molecular Sieves and Octahedral Layered Materials, Accounts of the Chemical Research. 41 (2008) 479-487.
DOI: 10.1021/ar7001667
Google Scholar
[17]
S.L. Suib, Structure, Porosity, and Redox in Porous Manganese Oxide Octahedral Layer and Molecular Sieve Materials, Journal of Materials Chemistry. 18 (2008) 1623-1631.
DOI: 10.1039/b714966m
Google Scholar
[18]
F.Y. Cheng, J. Chen, X.L. Gou, P.W. Shan, High Power Alkaline Zn-MnO2 Batteries Using γ-MnO2 Nanowires/Nanotubes and Electrolytic Zinc Powder, Advanced Materials. 17 (2005) 2753-2756.
DOI: 10.1002/adma.200500663
Google Scholar
[19]
J.B. Fei, Y. Cui, X.H. Yan, W. Qi, Y. Yang, K.W. Wang, Q. He, J.B. Li, Controlled Preparation of MnO2 Hierarchical Hollow Nanostructures and Their Application in Water Treatment, Advanced Materials. 20 (2008) 452-456.
DOI: 10.1002/adma.200701231
Google Scholar
[20]
M. Xu, L. Kong, W. Zhou, H. Li, Hydrothermal Synthesis and Pseudocapacitance Properties of α-MnO2 Hollow Spheres and Hollow Urchins, The Journal of Physical Chemistry: C. 111 (2007) 19141-19147.
DOI: 10.1021/jp076730b
Google Scholar
[21]
H. Huang, S. Sithambaram, C.H. Chen, C.K. Kithongo, L.P. Xu, A. Iyer, H.F. Garces, Microwave-Assisted Hydrothermal Synthesis of Cryptomelane-Type Octahedral Molecular Sieves (OMS-2) and their Catalytic Studies, Chemistry of Materials. 22 (2010) 3664-3669.
DOI: 10.1021/cm100220g
Google Scholar
[22]
R. Liu, S.B. Lee, MnO2/Poly (3,4-ethylenedioxythiophene) Coaxial Nanowires by One-Step Co-electrodeposition for Electrochemical Energy Storage, Journal of American Chemical Society. 130 (2008) 2942-2943.
DOI: 10.1021/ja7112382
Google Scholar
[23]
M. Nakayama, T. Kanaya, J.W. Lee, B.N. Popov, Electrochemical synthesis of birnessite-type layered manganese oxides for rechargeable lithium batteries, Journal of Power Sources. 179 (2008) 36 -366.
DOI: 10.1016/j.jpowsour.2007.12.075
Google Scholar
[24]
C.C. Ycu, L.X. Zkang, J.L. Shi, J.J. Zhao, J.H. Gao, D.S. Yan, A Simple Template Free Strategy to Synthesize Nanoporous Manganese and Nickel Oxides with Narrow Pore Size Distribution and Their Electrochemical Properties, Advanced Functional Materials. 18 (2008) 1544-1554.
DOI: 10.1002/adfm.200701052
Google Scholar
[25]
H.M. Chen, J.H. He, C.B. Zhang, H.He, Self-Assembly of Novel Mesoporous Manganese Oxide Nanostructures and Their Application in Oxidative Decomposition of Formaldehyde, Journal of Physical Chemistry: C. 111 (2007) 18033-18038.
DOI: 10.1021/jp076113n
Google Scholar
[26]
H.M. Chem, J.H. He, Facile Synthesis of Monodisperse Manganese Oxide Nanostructures and Their Application in Water Treatment, Journal of Physical Chemistry: C. 112 (2008) 17540-17545.
DOI: 10.1021/jp806160g
Google Scholar
[27]
E.K. Nyutu, C.H. Chen, S. Sithambaram, V.M.B. Crisostomo, S.L. Suib, Systematic Control of Particle Size in Rapid Open-Vessel Microwave Synthesis of K-OMS-2 Nanofibers, Journal of Physical Chemistry: C. 112 (2008) 6786-6793.
DOI: 10.1021/jp800672m
Google Scholar
[28]
R.V. Dunkle, Solar Water Distillation: Roof Type Still and a Multiple Effect Diffusion Still, International Development in Heat Transfer, A.S.M.E., Proc. International Heat Transfer, Part V, University of Colorado, 1961, pp.895-914.
Google Scholar
[29]
J.A. Duffie, W.A. Beckman, Solar Energy Thermal Process, John Wiley and Sons, New York, U.S.A, 1974.
Google Scholar
[30]
M. Zheng, Y. Liu, K. Jiang, Y. Xiao, D. Yuan, Alcohol-assisted Hydrothermal Carbonization to Fabricate Spheroidal Carbons with a Tunable Shape and Aspect Ratio, Carbon. 48 (2010) 1224-1233.
DOI: 10.1016/j.carbon.2009.11.045
Google Scholar
[31]
M. Sevilla, A.B. Fuertes, Chemical and Structural Properties of Carbonaceous Products Obtained by Hydrothermal Carbonization of Saccharides, Chemistry A European Journal. 15 (2009) 4195-4203.
DOI: 10.1002/chem.200802097
Google Scholar
[32]
E.M. Scherr, A.G. MacDiarmid, S.K. Manohar, J.G. Masters, Y. Sun, X. Tang, M.A. Druy, P.J. Glatkowski, V.B. Capjipe, J.E. Fischer, K.R. Cromack, M.E. Jozefowicz, J.M. Ginder, R.P. McCAll, A.J. Epstein, Polyaniline Oriented Films and Fibers, Synthetic Materials. 41 (1991) 1-2.
DOI: 10.1016/0379-6779(91)91173-8
Google Scholar
[33]
S. Thakur, R. Rai, I. Bdikin, M.A. Valente, Impedance and Modulus Spectroscopy Characterization of Tb modified Bi0.8A0.1Pb0.1Fe0.9Ti0.3O3Ceramics, Materials Research. 19 (2016) 1-8.
DOI: 10.1590/1980-5373-mr-2015-0504
Google Scholar
[34]
D. Jaganyi, M. Altaf, I. Wekesa, Synthesis and Characterization of Whisker-shaped MnO2 Nanostructure at Room Temperature, Applied Nanoscience. 3(4) (2013) 329-333.
DOI: 10.1007/s13204-012-0135-3
Google Scholar
[35]
W. Chen, X. Tao, Y. Li, H. Wang, D. Wei, C. Ban, Hydrothermal Synthesis of Graphene-MnO2-Polyaniline Composite and its Electrochemical Performance. Journal of Materials Science: Materials in Electronics, 27(7) (2016) 6816-6822.
DOI: 10.1007/s10854-016-4632-0
Google Scholar