Impetus Yield of Acrylic Top Cover Pyramid Solar still due to Furthered Thermal Conductivity of MnO2 and PANI-MnO2 Nanocomposite Materials

Article Preview

Abstract:

Attempts to study the effect of blend MnO2 and PANI-MnO2 nanocomposites in enhancing the productivity of an acrylic Pyramid Solar Still (PSS) is carried out. Synthesized nanocomposites assorted with black paint to improve the absorption efficiency. Size of the synthesized MnO2 is found to be 35nm. SEM image infers particles are aggregates with random shape. Thermal analysis if distillate yield confirms the formation of nanocomposite with improved thermal stability of the PANI. Distillate yield is observed around 0.484 litre/0.25m2, 0.568 litre/0.25m2 and 0.615 litre/0.25m2 still without and with MnO2 and PANI-MnO2 nanocomposites. Average efficiency is found to be 23.05%, 26.63% and 28.52% under three modes. Efficiency of the combined performance is amended due to the absorption properties of MnO2 and PANI-MnO2. Performance ratio under three modes are found to be 5.52 %, 6.44 % and 6.93 %. Results concluded that saturation vapour pressure and latent heat also plays a major hole in production of distillate yield.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1082)

Pages:

41-52

Citation:

Online since:

March 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G.N. Tiwari, P. Saxena, K. Thakur, Thermal Analysis of Active Solar Distillation System, Energy Convers. Mgmt. 35 (1994) 51-59.

DOI: 10.1016/0196-8904(94)90081-7

Google Scholar

[2] A.K. Bassam, Abu-Hijleh, Enhanced Solar Still Performance Using Water Film Cooling of the Glass Cover, Desalination. 107 (1996) 235-244.

DOI: 10.1016/s0011-9164(96)00165-8

Google Scholar

[3] Meukam, D. Njomo, A. Gbane, Siaka Toure, Experimental Optimization of a Solar Still: Application to Alcohol Distillation, Chemical Engineering and Processing. 43 (2004) 1569-1577.

DOI: 10.1016/j.cep.2004.02.007

Google Scholar

[4] V.S.V. Bapeshwararao, U. Singh, G.N. Tiwari, Transient Analysis of Double Basin Solar Still, Energy Convers. Mgmt. 23 (1983) 83-90.

DOI: 10.1016/0196-8904(83)90065-1

Google Scholar

[5] S.A. Lawrence, S.P. Gupta, G.N. Tiwari, Effect of Heat Capacity on the Performance of Solar Still with Water Flow over the Glass Cover, Energy Convers. Mgmt. 30 (1990) 277-285.

DOI: 10.1016/0196-8904(90)90010-v

Google Scholar

[6] Jenny Lindblom, Bo Nordell, Water Production by Underground Condensation of Humid Air, Desalination. 189 (2006) 248-260.

DOI: 10.1016/j.desal.2005.08.002

Google Scholar

[7] M. Boukar, A. Harmim, Performance Evaluation of a One-Sided Vertical Solar Still Tested in the Desert of Algeria, Desalination. 183 (2005) 113-126.

DOI: 10.1016/j.desal.2005.02.045

Google Scholar

[8] B. Selva Kumar, Sanjay Kumar, R. Jayaprakash, Performance Analysis of a "V" Type Solar Still Using a Charcoal Absorber and a Boosting Mirror, Desalination. 229 (2008) 217-230.

DOI: 10.1016/j.desal.2007.09.009

Google Scholar

[9] G.N. Tiwari, Enhancement of Daily Yield in a Double Basin Solar Still, Energy Convers. Mgmt. 25 (1985) 49-50.

DOI: 10.1016/0196-8904(85)90068-8

Google Scholar

[10] S.N. Raj, G.N. Tiwari, Single Basin Solar Still Coupled with Flat Plate Collector, Energy Convers. Mgmt. 23 (1983) 145-149.

DOI: 10.1016/0196-8904(83)90057-2

Google Scholar

[11] N.K. Dhiman, G.N. Tiwari, Effect of Water Flowing Over the Glass Cover of a Multi–Wick Solar Still, Energy Convers. Mgmt. 30 (1990) 245-250.

DOI: 10.1016/0196-8904(90)90006-k

Google Scholar

[12] G.N. Tiwari, Demonstration Plant of a Multi Wick Solar Still, Energy Convers. Mgmt. 24 (1984) 313-316.

DOI: 10.1016/0196-8904(84)90011-6

Google Scholar

[13] G.N. Tiwari, S.B. Sharma, M.S. Sodha, Performance of a Double Condensing Multiple Wick Solar Still, Energy Convers. Mgmt. 24 (1984) 155-159.

DOI: 10.1016/0196-8904(84)90028-1

Google Scholar

[14] R. Rathinam, M. Govindaraj, Photo Electro Catalytic Oxidation of Textile Industry Wastewater by RuO2/IrO2/TaO2 Coated Titanium Electrodes, Nature Environment and Pollution Technology. 20 (2020) 1069-1076.

DOI: 10.46488/nept.2021.v20i03.014

Google Scholar

[15] B. Selvakumar, V. Shanmugapriya, K. Amudha, P. Periasamy, Enhanced Thermophysical Properties and Productive Yield of Pyramid Solar Still Combined with Shallow Solar Pond by Incorporating ZnO/Al2O3 Nanocomposites, Lecture Notes in Electrical Engineering. 881 (2022) 1121-1135.

DOI: 10.1007/978-981-19-1111-8_86

Google Scholar

[16] S.L Suib, Porous Manganese Oxide Octahedral Molecular Sieves and Octahedral Layered Materials, Accounts of the Chemical Research. 41 (2008) 479-487.

DOI: 10.1021/ar7001667

Google Scholar

[17] S.L. Suib, Structure, Porosity, and Redox in Porous Manganese Oxide Octahedral Layer and Molecular Sieve Materials, Journal of Materials Chemistry. 18 (2008) 1623-1631.

DOI: 10.1039/b714966m

Google Scholar

[18] F.Y. Cheng, J. Chen, X.L. Gou, P.W. Shan, High Power Alkaline Zn-MnO2 Batteries Using γ-MnO2 Nanowires/Nanotubes and Electrolytic Zinc Powder, Advanced Materials. 17 (2005) 2753-2756.

DOI: 10.1002/adma.200500663

Google Scholar

[19] J.B. Fei, Y. Cui, X.H. Yan, W. Qi, Y. Yang, K.W. Wang, Q. He, J.B. Li, Controlled Preparation of MnO2 Hierarchical Hollow Nanostructures and Their Application in Water Treatment, Advanced Materials. 20 (2008) 452-456.

DOI: 10.1002/adma.200701231

Google Scholar

[20] M. Xu, L. Kong, W. Zhou, H. Li, Hydrothermal Synthesis and Pseudocapacitance Properties of α-MnO2 Hollow Spheres and Hollow Urchins, The Journal of Physical Chemistry: C. 111 (2007) 19141-19147.

DOI: 10.1021/jp076730b

Google Scholar

[21] H. Huang, S. Sithambaram, C.H. Chen, C.K. Kithongo, L.P. Xu, A. Iyer, H.F. Garces, Microwave-Assisted Hydrothermal Synthesis of Cryptomelane-Type Octahedral Molecular Sieves (OMS-2) and their Catalytic Studies, Chemistry of Materials. 22 (2010) 3664-3669.

DOI: 10.1021/cm100220g

Google Scholar

[22] R. Liu, S.B. Lee, MnO2/Poly (3,4-ethylenedioxythiophene) Coaxial Nanowires by One-Step Co-electrodeposition for Electrochemical Energy Storage, Journal of American Chemical Society. 130 (2008) 2942-2943.

DOI: 10.1021/ja7112382

Google Scholar

[23] M. Nakayama, T. Kanaya, J.W. Lee, B.N. Popov, Electrochemical synthesis of birnessite-type layered manganese oxides for rechargeable lithium batteries, Journal of Power Sources. 179 (2008) 36 -366.

DOI: 10.1016/j.jpowsour.2007.12.075

Google Scholar

[24] C.C. Ycu, L.X. Zkang, J.L. Shi, J.J. Zhao, J.H. Gao, D.S. Yan, A Simple Template Free Strategy to Synthesize Nanoporous Manganese and Nickel Oxides with Narrow Pore Size Distribution and Their Electrochemical Properties, Advanced Functional Materials. 18 (2008) 1544-1554.

DOI: 10.1002/adfm.200701052

Google Scholar

[25] H.M. Chen, J.H. He, C.B. Zhang, H.He, Self-Assembly of Novel Mesoporous Manganese Oxide Nanostructures and Their Application in Oxidative Decomposition of Formaldehyde, Journal of Physical Chemistry: C. 111 (2007) 18033-18038.

DOI: 10.1021/jp076113n

Google Scholar

[26] H.M. Chem, J.H. He, Facile Synthesis of Monodisperse Manganese Oxide Nanostructures and Their Application in Water Treatment, Journal of Physical Chemistry: C. 112 (2008) 17540-17545.

DOI: 10.1021/jp806160g

Google Scholar

[27] E.K. Nyutu, C.H. Chen, S. Sithambaram, V.M.B. Crisostomo, S.L. Suib, Systematic Control of Particle Size in Rapid Open-Vessel Microwave Synthesis of K-OMS-2 Nanofibers, Journal of Physical Chemistry: C. 112 (2008) 6786-6793.

DOI: 10.1021/jp800672m

Google Scholar

[28] R.V. Dunkle, Solar Water Distillation: Roof Type Still and a Multiple Effect Diffusion Still, International Development in Heat Transfer, A.S.M.E., Proc. International Heat Transfer, Part V, University of Colorado, 1961, pp.895-914.

Google Scholar

[29] J.A. Duffie, W.A. Beckman, Solar Energy Thermal Process, John Wiley and Sons, New York, U.S.A, 1974.

Google Scholar

[30] M. Zheng, Y. Liu, K. Jiang, Y. Xiao, D. Yuan, Alcohol-assisted Hydrothermal Carbonization to Fabricate Spheroidal Carbons with a Tunable Shape and Aspect Ratio, Carbon. 48 (2010) 1224-1233.

DOI: 10.1016/j.carbon.2009.11.045

Google Scholar

[31] M. Sevilla, A.B. Fuertes, Chemical and Structural Properties of Carbonaceous Products Obtained by Hydrothermal Carbonization of Saccharides, Chemistry A European Journal. 15 (2009) 4195-4203.

DOI: 10.1002/chem.200802097

Google Scholar

[32] E.M. Scherr, A.G. MacDiarmid, S.K. Manohar, J.G. Masters, Y. Sun, X. Tang, M.A. Druy, P.J. Glatkowski, V.B. Capjipe, J.E. Fischer, K.R. Cromack, M.E. Jozefowicz, J.M. Ginder, R.P. McCAll, A.J. Epstein, Polyaniline Oriented Films and Fibers, Synthetic Materials. 41 (1991) 1-2.

DOI: 10.1016/0379-6779(91)91173-8

Google Scholar

[33] S. Thakur, R. Rai, I. Bdikin, M.A. Valente, Impedance and Modulus Spectroscopy Characterization of Tb modified Bi0.8A0.1Pb0.1Fe0.9Ti0.3O3Ceramics, Materials Research. 19 (2016) 1-8.

DOI: 10.1590/1980-5373-mr-2015-0504

Google Scholar

[34] D. Jaganyi, M. Altaf, I. Wekesa, Synthesis and Characterization of Whisker-shaped MnO2 Nanostructure at Room Temperature, Applied Nanoscience. 3(4) (2013) 329-333.

DOI: 10.1007/s13204-012-0135-3

Google Scholar

[35] W. Chen, X. Tao, Y. Li, H. Wang, D. Wei, C. Ban, Hydrothermal Synthesis of Graphene-MnO2-Polyaniline Composite and its Electrochemical Performance. Journal of Materials Science: Materials in Electronics, 27(7) (2016) 6816-6822.

DOI: 10.1007/s10854-016-4632-0

Google Scholar