[1]
B. Zhou, B. Liu, Sh. Zhang, R. Lin, Y. Jiang, X. Lan, Microstructure evolution of recycled 7075 aluminum alloy and its mechanical and corrosion properties, Journal of Alloys and Compounds 879 (2021) 160407.
DOI: 10.1016/j.jallcom.2021.160407
Google Scholar
[2]
L. Kuchariková, E. Tillová, O. Bokůvka, Recycling and properties of recycled aluminium alloys used in the transportation industry, Transport Problems 11 (2016) 117-122.
DOI: 10.20858/tp.2016.11.2.11
Google Scholar
[3]
C. Bulei, I. Kiss, V. Alexa, Development of metal matrix composites using recycled secondary raw materials from aluminium wastes, Materials Today: Proceedings, 45 (2021) 4143-4149.
DOI: 10.1016/j.matpr.2020.11.926
Google Scholar
[4]
J. Svobodova, M. Lunak, M. Lattner, Analysis of the Increased Iron Content on the Corrosion Resistance of the AlSi7Mg0.3 Alloy Casting, Manufacturing Technology, 19 (2019) 1041-1046.
DOI: 10.21062/ujep/415.2019/a/1213-2489/mt/19/6/1041
Google Scholar
[5]
A. Bjurenstedt, E. Ghassemali, S. Seifeddine, A. K. Dahle, The effect of Fe-rich intermetallics on crack initiation in cast aluminium: An in-situ tensile study, Materials Science and Engineering: A,756 (2019) 502-507.
DOI: 10.1016/j.msea.2018.07.044
Google Scholar
[6]
D. Stanić, V. Špada, D. Iljkić, Influence of natural aging on the mechanical properties of high pressure die casting (HPDC) EN AC 46000-AlSi9Cu3(Fe) Al alloy, Materials Testing, 61 (2019) 448-454.
DOI: 10.3139/120.111341
Google Scholar
[7]
D. Song, Y. Jia, Q. Li, Y. Zhao, W. Zhang, Effect of Initial Fe Content on Microstructure and Mechanical Properties of Recycled Al-7.0Si-Fe-Mn Alloys with Constant Mn/Fe Ratio, Materials. 15 (2022) 1618.
DOI: 10.3390/ma15041618
Google Scholar
[8]
C. Quintero, G. Ercolino, A. Poozhikunnath, R. Maric, S. Specchia, Analysis of heat and mass transfer limitations for the combustion of methane emissions on PdO/Co3O4 coated on ceramic open cell foams, Chemical Engineering Journal 405 (2021) 126970.
DOI: 10.1016/j.cej.2020.126970
Google Scholar
[9]
S. Dash, D. Li, X. Zeng, D. Li, D. Chen, Cyclic deformation behavior and fatigue life prediction of an automotive cast aluminum alloy: A new method of determining intrinsic fatigue toughness, Fatigue Fract Eng Mater Struct., 45 (2022) 725-738.
DOI: 10.1111/ffe.13629
Google Scholar
[10]
L. Kuchariková, D. Medvecká, E. Tillová, J. Belan, M. Kritikos, M. Chalupová, M. Uhríčik, The Effect of the β-Al5FeSi Phases on Microstructure, Mechanical and Fatigue Properties in A356.0 Cast Alloys with Higher Fe Content without Additional Alloying of Mn, Materials, 14 (2021) 1943.
DOI: 10.3390/ma14081943
Google Scholar
[11]
L. Kuchariková, E. Tillová, M. Chalupová, P. Hanusová, Investigation on microstructural and hardness evaluation in heat-treated and as-cast state of secondary AlSiMg cast alloys, Materials Today: Proceedings 32 (2020) 63-67.
DOI: 10.1016/j.matpr.2020.02.037
Google Scholar
[12]
J. Kasińska, D. Bolibruchová, M. Matejka, Marek, The Influence of Remelting on the Properties of AlSi9Cu3 Alloy with Higher Iron Content, Materials. 13 (2020) 575.
DOI: 10.3390/ma13030575
Google Scholar
[13]
L. Hurtalová, E. Tillová, M. Chalupová, Identification and Analysis of Intermetallic Phases in Age-Hardened Recycled AlSi9Cu3 Cast Alloy, Archive of Mechanical Engineering. LIX (2012) 385-396.
DOI: 10.2478/v10180-012-0020-3
Google Scholar
[14]
H. Yang, S. Ji, Z. Fan, Effect of heat treatment and Fe content on the microstructure and mechanical properties of die-cast Al–Si–Cu alloys, Materials & Design. 85 (2015) 823-832.
DOI: 10.1016/j.matdes.2015.07.074
Google Scholar
[15]
D. Závodská, E. Tillová, I. Švecová, M. Chalupová, L. Kuchariková, J. Belan, The Effect of Iron Content on Microstructure and Porosity of Secondary AlSi7Mg0.3 Cast Alloy. Period. Polytech. Transp. Eng., 47(4), (2019) 283-289.
DOI: 10.3311/pptr.12101
Google Scholar
[16]
J. Sena, et al, Influence of chemical composition and impurities on microstructure and formation of intermetallic phases in selected aluminum alloys. Proceedings 29th International Conference on Metallurgy and Materials (2020) 1174-1180.
DOI: 10.37904/metal.2020.3622
Google Scholar
[17]
E. Cerri, M.T. Di Giovanni, E. Ghio, A study of intermetallic phase stability in Al-Si-Mg casting alloy: the role of Cu additions. La metallurgia Italiana, light metals (2020) 37-47.
Google Scholar
[18]
J. Wiecheć, P. Uliasz, T. Knych, J. Tatarczuch, Research into the Impact of Magnesium Content in the AlSi7Mg Aluminum Cast Alloys on the Strength and Electrical Properties of the Material after Different Parameters of Heat Treatment Operations, Key Engineering Materials 641 (2015) 63–68
DOI: 10.4028/www.scientific.net/kem.641.63
Google Scholar
[19]
J. A. Taylor, Iron-Containing Intermetallic Phases in a Al-Si Based Casting Alloys, Procedia Materials Science 1 (2012) 19-33.
DOI: 10.1016/j.mspro.2012.06.004
Google Scholar