Microstructure Analysis of Progressive Secondary AlSi7Mg0.6 Alloy with Higher Fe Content Using Electron Metallography Techniques

Article Preview

Abstract:

This article investigates the effect of the higher Fe content on the formation of brittle Fe-rich needle-like phases in heat-treated secondary AlSi7Mg0.6 cast alloy. These secondary-recycled alloys contain an increased amount of impurities due to remelting of scrap. The common unwanted impurity found in these alloys is Fe. Its higher content negatively affects the structure and mechanical properties. Fe has low solubility in Al-alloys thus forming unwanted intermetallic phases such as β-Al5FeSi. Fe cannot be removed in the foundry conditions, so its content is reduced to an acceptable limit. One of the possibilities to eliminate the negative effect of high Fe content on the structure and mechanical properties is heat treatment. Heat treatment influences the size and morphology of structural components, which leads to a finer structure and thus better mechanical properties. Therefore, this study is focused on the changes in structure depending on the Fe content influenced by heat treatment applied to the secondary AlSi7Mg0.6 alloy with higher Fe content and evaluation using a scanning electron microscope, including methods of EDX analysis, and methods of deep etching.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1082)

Pages:

165-170

Citation:

Online since:

March 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Zhou, B. Liu, Sh. Zhang, R. Lin, Y. Jiang, X. Lan, Microstructure evolution of recycled 7075 aluminum alloy and its mechanical and corrosion properties, Journal of Alloys and Compounds 879 (2021) 160407.

DOI: 10.1016/j.jallcom.2021.160407

Google Scholar

[2] L. Kuchariková, E. Tillová, O. Bokůvka, Recycling and properties of recycled aluminium alloys used in the transportation industry, Transport Problems 11 (2016) 117-122.

DOI: 10.20858/tp.2016.11.2.11

Google Scholar

[3] C. Bulei, I. Kiss, V. Alexa, Development of metal matrix composites using recycled secondary raw materials from aluminium wastes, Materials Today: Proceedings, 45 (2021) 4143-4149.

DOI: 10.1016/j.matpr.2020.11.926

Google Scholar

[4] J. Svobodova, M. Lunak, M. Lattner, Analysis of the Increased Iron Content on the Corrosion Resistance of the AlSi7Mg0.3 Alloy Casting, Manufacturing Technology, 19 (2019) 1041-1046.

DOI: 10.21062/ujep/415.2019/a/1213-2489/mt/19/6/1041

Google Scholar

[5] A. Bjurenstedt, E. Ghassemali, S. Seifeddine, A. K. Dahle, The effect of Fe-rich intermetallics on crack initiation in cast aluminium: An in-situ tensile study, Materials Science and Engineering: A,756 (2019) 502-507.

DOI: 10.1016/j.msea.2018.07.044

Google Scholar

[6] D. Stanić, V. Špada, D. Iljkić, Influence of natural aging on the mechanical properties of high pressure die casting (HPDC) EN AC 46000-AlSi9Cu3(Fe) Al alloy, Materials Testing, 61 (2019) 448-454.

DOI: 10.3139/120.111341

Google Scholar

[7] D. Song, Y. Jia, Q. Li, Y. Zhao, W. Zhang, Effect of Initial Fe Content on Microstructure and Mechanical Properties of Recycled Al-7.0Si-Fe-Mn Alloys with Constant Mn/Fe Ratio, Materials. 15 (2022) 1618.

DOI: 10.3390/ma15041618

Google Scholar

[8] C. Quintero, G. Ercolino, A. Poozhikunnath, R. Maric, S. Specchia, Analysis of heat and mass transfer limitations for the combustion of methane emissions on PdO/Co3O4 coated on ceramic open cell foams, Chemical Engineering Journal 405 (2021) 126970.

DOI: 10.1016/j.cej.2020.126970

Google Scholar

[9] S. Dash, D. Li, X. Zeng, D. Li, D. Chen, Cyclic deformation behavior and fatigue life prediction of an automotive cast aluminum alloy: A new method of determining intrinsic fatigue toughness, Fatigue Fract Eng Mater Struct., 45 (2022) 725-738.

DOI: 10.1111/ffe.13629

Google Scholar

[10] L. Kuchariková, D. Medvecká, E. Tillová, J. Belan, M. Kritikos, M. Chalupová, M. Uhríčik, The Effect of the β-Al5FeSi Phases on Microstructure, Mechanical and Fatigue Properties in A356.0 Cast Alloys with Higher Fe Content without Additional Alloying of Mn, Materials, 14 (2021) 1943.

DOI: 10.3390/ma14081943

Google Scholar

[11] L. Kuchariková, E. Tillová, M. Chalupová, P. Hanusová, Investigation on microstructural and hardness evaluation in heat-treated and as-cast state of secondary AlSiMg cast alloys, Materials Today: Proceedings 32 (2020) 63-67.

DOI: 10.1016/j.matpr.2020.02.037

Google Scholar

[12] J. Kasińska, D. Bolibruchová, M. Matejka, Marek, The Influence of Remelting on the Properties of AlSi9Cu3 Alloy with Higher Iron Content, Materials. 13 (2020) 575.

DOI: 10.3390/ma13030575

Google Scholar

[13] L. Hurtalová, E. Tillová, M. Chalupová, Identification and Analysis of Intermetallic Phases in Age-Hardened Recycled AlSi9Cu3 Cast Alloy, Archive of Mechanical Engineering. LIX (2012) 385-396.

DOI: 10.2478/v10180-012-0020-3

Google Scholar

[14] H. Yang, S. Ji, Z. Fan, Effect of heat treatment and Fe content on the microstructure and mechanical properties of die-cast Al–Si–Cu alloys, Materials & Design. 85 (2015) 823-832.

DOI: 10.1016/j.matdes.2015.07.074

Google Scholar

[15] D. Závodská, E. Tillová, I. Švecová, M. Chalupová, L. Kuchariková, J. Belan, The Effect of Iron Content on Microstructure and Porosity of Secondary AlSi7Mg0.3 Cast Alloy. Period. Polytech. Transp. Eng., 47(4), (2019) 283-289.

DOI: 10.3311/pptr.12101

Google Scholar

[16] J. Sena, et al, Influence of chemical composition and impurities on microstructure and formation of intermetallic phases in selected aluminum alloys. Proceedings 29th International Conference on Metallurgy and Materials (2020) 1174-1180.

DOI: 10.37904/metal.2020.3622

Google Scholar

[17] E. Cerri, M.T. Di Giovanni, E. Ghio, A study of intermetallic phase stability in Al-Si-Mg casting alloy: the role of Cu additions. La metallurgia Italiana, light metals (2020) 37-47.

Google Scholar

[18] J. Wiecheć, P. Uliasz, T. Knych, J. Tatarczuch, Research into the Impact of Magnesium Content in the AlSi7Mg Aluminum Cast Alloys on the Strength and Electrical Properties of the Material after Different Parameters of Heat Treatment Operations, Key Engineering Materials 641 (2015) 63–68

DOI: 10.4028/www.scientific.net/kem.641.63

Google Scholar

[19] J. A. Taylor, Iron-Containing Intermetallic Phases in a Al-Si Based Casting Alloys, Procedia Materials Science 1 (2012) 19-33.

DOI: 10.1016/j.mspro.2012.06.004

Google Scholar