Formation of Sulphides in As-Cast GOES Thin Strips

Article Preview

Abstract:

This paper deals with the formation of sulphides in as-cast grain-oriented electrical steel (GOES) thin strip during solidification and subsequent cooling through the (δ + γ) field. Chemical composition of the strip was as follows, in mass %: 0.034 C, 2.81 Si, 0.06 Mn, 0.024 S, 0.20 Cr, 0.15 Cu, 0.055 Ni, 0.0011 Ti, 0.0056 N and 0.002 Al. It was found out that chemical composition of coarse sulphides, formed in the area of final solidification, was very different from the composition of fine sulphides precipitated in the two-phase region. Coarse sulphides were rich in iron. Fine complex sulphides were identified as the Cr2CuS4 phase. The effect of fine sulphides on the austenite decomposition at the end of the (δ + γ) field was studied.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1082)

Pages:

177-182

Citation:

Online since:

March 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Y. Song, H. T. Liu, H. H. Lu, H. Z. Li, W. Q. Liu, X. M. Zhang, G. D. Wang, Effect of hot rolling reduction on microstructure, texture and ductility of strip-cast grain-oriented silicon steel with different solidification structures, Materials Science and Engineering: A. 605 (2014) 260-269.

DOI: 10.1016/j.msea.2014.03.052

Google Scholar

[2] J. Y., Park, K. H., Oh, H. Y, Ra, Microstructure and crystallographic texture of strip-cast 4.3 wt.% Si steel sheet, Scripta materialia, 40 (8) (1999) 881-885.

DOI: 10.1016/s1359-6462(99)00044-5

Google Scholar

[3] H.-Y. Song, et al., Microstructure and texture evolution of strip casting grain-oriented silicon steel, IEEE Transactions on Magnetics, 51 (11) (2015) 1-4.

DOI: 10.1109/intmag.2015.7156865

Google Scholar

[4] Z. Xia, Y. Kang, Q. Wang, Developments in the production of grain-oriented electrical steel, Journal of Magnetism and Magnetic Materials, 320 (23) (2008) 3229-3233.

DOI: 10.1016/j.jmmm.2008.07.003

Google Scholar

[5] Y. Hayakawa. Mechanism of secondary recrystallization of Goss grains in grain-oriented electrical steel, Science and Technology of Advanced Materials, 18 (1) (2017) 480-497

DOI: 10.1080/14686996.2017.1341277

Google Scholar

[6] K. Günther, et al., Recent Technology Developments in the Production of Grain-Oriented Electrical Steel. Steel research international, 76 (6) (2005) 413-421.

DOI: 10.1002/srin.200506030

Google Scholar

[7] T. Kubota, M. Fujikura, Y. Ushigami, Recent progress and future trend on grain-oriented silicon steel, Journal of Magnetism and Magnetic Materials, 215 (2000) 69-73.

DOI: 10.1016/s0304-8853(00)00069-x

Google Scholar

[8] H. T. Liu, S. J. Yao, Y. Sun, F. Gao, H. Y. Song, G. H. Liu, G. D. Wang, Evolution of microstructure, texture and inhibitor along the processing route for grain-oriented electrical steels using strip casting, Materials Characterization, 106 (2015) 273-282.

DOI: 10.1016/j.matchar.2015.06.010

Google Scholar

[9] V. Vodárek, C. P. Reip, A. Volodarskaja, Microstructure Evolution in Belt-Casted Strip of Grain Oriented Electrical Steel, Trans Tech Publications Ltd. Key Engineering Materials, 810 (2019) 82-88.

DOI: 10.4028/www.scientific.net/kem.810.82

Google Scholar

[10] Y. Ohmori, K. Nakai, H. Ohtsubo, Y. Isshiki. Mechanism of Widmanstätten austenite formation in a δ/γ duplex phase stainless steel, ISIJ international, 35 (8) (1995) 969-975.

DOI: 10.2355/isijinternational.35.969

Google Scholar

[11] H. Y. Song, H. T. Liu, G. D. Wang, J. J. Jonas, Formation of Widmanstätten austenite in strip cast grain-oriented silicon steel, Metallurgical and Materials Transactions A, 48 (4) (2017) 1959-1968.

DOI: 10.1007/s11661-017-3975-3

Google Scholar

[12] W. B. Pearson, A handbook of lattice spacings and structures of metals and alloys, London, Pergamon Press, 1958.

Google Scholar