The Assessment of the Collision Probability of Particles in the Process of Detonation Spraying

Article Preview

Abstract:

The article discusses a technique for assessing the collision probability of particles of dissimilar materials in the process of detonation spraying of composite coatings. In consequence of different properties of initial powder materials (mass, aerodynamic resistance), quality indicators of composite coatings are determined not only with motion parameters of particles but with their mutual position in the flow of detonation products. In the case of using reactive components, interaction of molten particles in the flow can lead to chemical reactions, formation new materials on the substrate, heterogeneous structure of the coating, and deterioration its strength and adhesive properties. Preliminary quantitative assessment of the probability of collision of particles before their contact with the surface of the product affords to make a conclusion about deviation of quantitative indicators of the surface from supposed ones before full-scale tests.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1083)

Pages:

172-177

Citation:

Online since:

April 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V.P. Haridasan, A. Velayudham, R. Krishnamurthy, Response surface modeling and parameter optimization of detonation spraying with enhanced coating performance, Materials Today: Proceedings. Volume 46, Part 9 (2021) 3474-3481.

DOI: 10.1016/j.matpr.2020.11.867

Google Scholar

[2] V. Yu. Ulianitsky, A.A. Shtertser, I.S. Batraev, D.K. Rybin, Fabrication of layered ceramic-metal composites by detonation spraying Ceramics International. Volume 46 (2020) 27903-27908.

DOI: 10.1016/j.ceramint.2020.07.225

Google Scholar

[3] V. Yu. Ulianitsky, I. S. Batraev, A. A. Shtertser, D. V. Dudina, N. V. Bulina, I. Smurov, Detonation spraying behaviour of refractory metals: Case studies for Mo and Ta-based powders, Advanced Powder Technology. Volume 29, Issue 8 (2018) 1859-1864.

DOI: 10.1016/j.apt.2018.04.023

Google Scholar

[4] D. K. Rybin, I. S. Batraev, D. V. Dudina, A. V. Ukhina, V. Yu. Ulianitsky, Deposition of tungsten coatings by detonation spraying Surface and Coatings Technology. Volume 409 (2021) 126943.

DOI: 10.1016/j.surfcoat.2021.126943

Google Scholar

[5] A.A. Shtertsera, D.K. Rybin, V.Yu. Ulianitsky, W. Park, M. Datekyu, T. Wada, H. Kato, Characterization of nanoscale detonation carbon produced in a pulse gas-detonation device, Diamond and Related Materials. Volume 101 (2020) 107553.

DOI: 10.1016/j.diamond.2019.107553

Google Scholar

[6] Sh. Cui, H. Zhai, W. Li, X. Fan, X. Li, W. Ning, Dangsheng Xiong Microstructure and tribological properties of Fe-based amorphous coating prepared by detonation spray, Journal of Non-Crystalline Solids. Volume 556 (2021) 120564.

DOI: 10.1016/j.jnoncrysol.2020.120564

Google Scholar

[7] V. Yu. Ulianitsky, D. K. Rybin, A. V. Ukhina, B. B. Bokhonov, D. V. Dudina, M. N. Samodurova, E. A. Trofimov, Structure and composition of Fe-Co-Ni and Fe-Co-Ni-Cu coatings obtained by detonation spraying of powder mixtures. Materials Letters. Volume 290 (2021) 129498.

DOI: 10.1016/j.matlet.2021.129498

Google Scholar

[8] V. Yu. Ulianitsky, D. V. Dudina, I. S. Batraev, A. I. Kovalenko, N. V. Bulina. B. B. Bokhonov, Detonation spraying of titanium and formation of coatings with spraying atmosphere-dependent phase composition, Surface and Coatings Technology. Volume 261 (2015) 174-180.

DOI: 10.1016/j.surfcoat.2014.11.038

Google Scholar

[9] D. V. Dudina, M. A. Korchagin, S. B. Zlobin, V. Yu. Ulianitsky, O. I. Lomovsky, N.V. Bulina, I. A. Bataev, V. A. Bataev, Compositional variations in the coatings formed by detonation spraying of Ti3Al at different O2/C2H2 ratios, Intermetallics. Volume 29 (2012) 140-146.

DOI: 10.1016/j.intermet.2012.05.010

Google Scholar

[10] V.P. Haridasan, A. Velayudham, R. Krishnamurthy, Response surface modeling and parameter optimization of detonation spraying with enhanced coating performance, Materials Today: Proceedings. Volume 46, Part 9 (2021) 3474-3481.

DOI: 10.1016/j.matpr.2020.11.867

Google Scholar

[11] I. S. Batraev, V. Yu. Ulianitsky, D. V. Dudina, Detonation spraying of copper: theoretical analysis and experimental studies, Materials Today: Proceedings. Volume 46, Part 9 (2021) 3474-3481.

DOI: 10.1016/j.matpr.2017.09.006

Google Scholar

[12] V. Ulianitsky, I. Batraev, D. Dudina, I. Smurov, Enhancing the properties of WC/Co detonation coatings using two-component fuels, Surface and Coatings Technology. Volume 318 (2017) 244-249.

DOI: 10.1016/j.surfcoat.2016.08.008

Google Scholar

[13] D. V. Dudina, G. A. Pribytkov, M. G. Krinitcyn, M. A. Korchagin, N. V. Bulina, B. B. Bokhonov, I. S. Batraev, D. K. Rybin, V. Yu. Ulianitsky, Detonation spraying behavior of TiCx–Ti powders and the role of reactive processes in the coating formation, Ceramics International. Volume 42, Issue 1, Part A (2016) 690-696.

DOI: 10.1016/j.ceramint.2015.08.166

Google Scholar

[14] D. V. Dudina, I. S. Batraev, V. Yu. Ulianitsky, M. A. Korchagin, Possibilities of the Computer-Controlled Detonation Spraying method: A chemistry viewpoint, Ceramics International. Volume 40, Issue 2 (2014) 3253-3260.

DOI: 10.1016/j.ceramint.2013.09.111

Google Scholar

[15] D. V. Dudina, S. B. Zlobin, N. V. Bulina, A. L. Bychkov, V. N. Korolyuk, V. Yu. Ulianitsky, O. I. Lomovsky, Detonation spraying of TiO2–2.5 vol.% Ag powders in a reducing atmosphere, Journal of the European Ceramic Society. Volume 32, Issue 4 (2012) 815-821.

DOI: 10.1016/j.jeurceramsoc.2011.10.022

Google Scholar

[16] A. Shtertser, C. Muders, S. Veselov, S. Zlobin, V. Ulianitsky, X. Jiang, V. Bataev, Computer controlled detonation spraying of WC/Co coatings containing MoS2 solid lubricant, Surface and Coatings Technology. Volume 206, Issue 23 (2012) 4763-4770.

DOI: 10.1016/j.surfcoat.2012.03.043

Google Scholar

[17] V. Yu. Ulianitsky, D. V. Dudina, I. S. Batraev, D. K. Rybin, N. V. Bulina, A. V. Ukhina, B. B. Bokhonov, The influence of the in-situ formed and added carbon on the formation of metastable Ni-based phases during detonation spraying, Materials Letters. Volume 181 (2016) 127-131.

DOI: 10.1016/j.matlet.2016.06.022

Google Scholar

[18] W.-B. Liao, Zh.-X. Wu, W. Lu, M. He, T. Wang, Z. Guo, J. Huang, Microstructures and mechanical properties of CoCrFeNiMn high-entropy alloy coatings by detonation spraying, Intermetallics. Volume 132 (2021) 107138.

DOI: 10.1016/j.intermet.2021.107138

Google Scholar

[19] A. A. Shtertser, I. S. Batraev, V. Yu. Ulianitsky, I. D. Kuchumova, N. V. Bulina, A. V. Ukhina, B. B. Bokhonov, D. V. Dudina, Ph. V. Trinh, D. D. Phuong, Detonation spraying of Ti-Cu mixtures in different atmospheres: Carbon, nitrogen and oxygen uptake by the powders. Surfaces and Interfaces. Volume 21 (2020) 100676.

DOI: 10.1016/j.surfin.2020.100676

Google Scholar

[20] M.V. Nenashev, D.A. Demoretsky, S.Y. Ganigin, I.V. Nechaev, I.A. Kuznetsov, A.A. Novikov, V.L. Simogin, A.Y. Murzin, A.G. Popov, A.T. Nurmukhametov, N.S. Aldebenev, M.S. Grechukhina, I.R. Toneev, RU Patent 2,744,805 (2021).

Google Scholar

[21] I. Nechaeva, A. Nechaev, Method of Assessing the Sensitivity of the Dust-Air Mixture to Thermal Effects Caused by Electric Discharge / Proceedings, 21st International Conference "Complex Systems: Control and Modeling Problems, CSCMP. 553-557 (2019) 8976612.

DOI: 10.1109/cscmp45713.2019.8976612

Google Scholar

[22] D. V. Lakshmi, P. S. Babu, L. R. Krishna, R. Vijay, D. S. Rao, G. Padmanabham, Corrosion and erosion behavior of iron aluminide (FeAl(Cr)) coating deposited by detonation spray technique Advanced Powder Technology. Volume 32, Issue 7 (2021) 2192-2201.

DOI: 10.1016/j.apt.2021.04.032

Google Scholar