Investigation of the Pipeline Coating Properties Degradation to Increase the Energy Efficiency of the Cathodic Protection Stations

Article Preview

Abstract:

In this paper, it is proposed to investigate the influence of the parameter providing the rate of pipeline coating degradation on the protective length of cathodic protection systems (CPS). Comparison of the calculated values of the pipeline coating resistance with the predicted values is carried out according to the theoretical distribution of the pipeline coating resistance in time. The difference between the practical value of the parameter providing the rate of coating degradation of the considered pipeline section from the predicted one is determined. The dependence of the parameter providing the rate of pipeline coating degradation on the protective length of the CPS has been formed, which makes it possible to reduce the number of cathodic protection stations along the pipeline path at the design stage, and to diminish their energy consumption in the electrochemical protection system from corrosion of oil and gas pipelines.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1083)

Pages:

183-192

Citation:

Online since:

April 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Energeticheskaya strategiya Rossijskoj Federacii na period do 2035 (2020), Available at: http://www.consultant.ru/document/cons_doc_LAW_354840/feb387ba6cb412e94e5c4fd72de0228c1a68af25/

Google Scholar

[2] E.I. Reishakhrit, Specific features of energy efficiency management at enterprises of oil processing industry, Journal of Mining Institute. 219 (2016) 490.

Google Scholar

[3] M.A. Vasilyeva and A.A. Volchikhina, Analysis of influence of pipeline roughness dispersion on energy consumption during fluid transportation, Int. Conf. of Complex Equipment of Quality Control Lab. Nuclear Physics, vol. 1118(1), Saint-Petersburg: St. Petersburg Mining University, 012047.

DOI: 10.1088/1742-6596/1118/1/012047

Google Scholar

[4] PJSC Transneft 2020 Annual Report of the Sustainable Development 2019: Use of Energy Resources and Energy Conservation, vol. 5, pp.127-38, Available at: https://www.transneft.ru/u/section_file/48791/verstka_oyr_rys_dlya_saita.pdf

Google Scholar

[5] S. Braungardt, et. al., Report on behalf of DG ENER: Study evaluating the current energy efficiency policy framework in the EU and providing orientation on policy options for realising the cost-effective energyefficiency/saving potential until 2020 and beyond, Karlsruhe/Vienna/Rome: Fraunhofer Institute for Systems and Innovation Research ISI, 2014, p.200.

Google Scholar

[6] Exxon Mobil Corporation 2019 Outlook for Energy: A perspective to 2040, Available at: https://www.exxonmobil.ru/-/media/Russia/Files/Energy-and-technology/Outlook-for-Energy---2019/2019-report-documents/2019-Outlook-for-Energy_RUS.pdf

DOI: 10.1787/42674a7e-en

Google Scholar

[7] PetroChina Company Limited 2020 Environmental, social and governance report, p.80, Available at: http://www.petrochina.com.cn/ptr/gsgg/202103/80960682b4ed491198a18f467556372e/files/232dcad43660428aafd9ec7c3a79151e.pdf

Google Scholar

[8] PJSC Gazprom 2018 Politika PAO Gazprom v oblasti energoeffektivnosti i energosberezheniya, p.3, Available at: https://www.gazprom.ru/f/posts/60/091228/2018-11-20-energetic-policy.pdf

Google Scholar

[9] M.V. Yumashev, Strategy of entropy and quasientropy processes reduction in the power saving control and energy efficiency improvement system of Gazprom, PJSC Territoria Neftegaz. 6 (2016) 108-14.

Google Scholar

[10] J.E. Aksyutin, A.G. Ishkov, G.A. Hvorov and G.S. Akopova, Realizaciya potenciala energosberezheniya v magistral'nom transporte gaza, Gazprom PJSC Gazovaya promishlennost'. 1(750) (2017) 52-8.

Google Scholar

[11] A.W. Peabody, Control of Pipeline Corrosion, ed Ronald L. Bianchetti, Houston, Tx: NACE Int., 1967, p.316.

Google Scholar

[12] Hua Bai, Mechanism analysis, anti-corrosion techniques and numerical modeling of corrosion in energy industry, Oil & Gas Science and Technology. 75 (2020) 42-54.

DOI: 10.2516/ogst/2020031

Google Scholar

[13] F.M. Mustafin, M.V. Kuznecov, G.G. Vasil'ev, et al., Zashchita truboprovodov ot korrozii, St Petersburg: Nedra, vol. 1 (2005) 620.

Google Scholar

[14] Standard Organization RD 153-39.4-039-99, Normy proektirovaniya elektrohimicheskoj zashchity magistral'nyh truboprovodov i ploshchadok MN, Moscow: Transneft' VNIIST, 1999, p.80.

Google Scholar

[15] Standard Organization RD-39Р-00147105-025-02, Metodika opredeleniya ostatochnogo resursa izolyacionnyh pokrytij podzemnyh truboprovodov, Ufa: GUP Ipter, 2002, p.13.

Google Scholar

[16] Standard Organization RD-91.020.00-KTN-234-10, Normy proektirovaniya elektrohimicheskoj zashchity magistral'nyh truboprovodov i sooruzhenij NPS, Moscow: Transneft' VNIIST, 2010, p.71.

Google Scholar

[17] Standard Organization STO Gazprom 9.2-002-2009, Zashchita ot korrozii, Elektrohimicheskaya zashchita ot korrozii, Osnovnye trebovaniya, Moscow: Gazprom VNIIGAZ, 2009, p.20.

Google Scholar

[18] Standard Organization STO Gazprom 9.2-003-2020, Zashchita ot korrozii. Proektirovanie elektrohimicheskoj zashchity podzemnyh sooruzhenij, Moscow: Gazprom VNIIGAZ, 2020, p.44.

Google Scholar

[19] Standard Organization STO Gazprom 9.0-001-2009, Zashchita ot korrozii, Osnovnye polozheniya, Moscow: Gazprom VNIIGAZ, 2009, p.19.

Google Scholar

[20] Yu.V. Aleksandrov and R.V. Aginey, Aktual'nye voprosy zashchity ot korrozii dlitel'no ekspluatiruemyh magistral'nyh gazoprovodov, St Petersburg: Nedra, 2012, p.394.

Google Scholar

[21] S.A. Ivanik and E.A. Lyubin, Chemical and electrochemical methods of protection from corrosion of gas and oil pipelines pipelinesand storage tanks, International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management (SGEM), Albena, Bulgaria, vol. 17(14) (2017) 579-84.

DOI: 10.5593/sgem2017/14/s06.073

Google Scholar

[22] L.A. Goldobina and P.S. Orlov, Analysis the corrosion destructions causes in underground pipelines and new solutions for increasing corrosion steel's resistance, Journal of Mining Institute. 219 (2016) 459-64.

Google Scholar

[23] B. Issa, V.Y. Bazhin, N.M. Telyakov and A.N. Telyakov, Increasing of corrosion resistance of welded radiant and convection coiled-pipes in tubular furnaces at kinef crude oil refinery, Youth Technical Sessions Proceedings-Proceedings of the 6th Youth Forum of the World Petroleum Council, 2019, pp.243-9.

DOI: 10.1201/9780429327070-33

Google Scholar

[24] A.N. Lyubchik, E.I. Krapivskij and O.M. Bol'shunova, Prediction of the technical status of pipeline based on analysis, Journal of Mining Institute. 192 (2011) 153-6.

Google Scholar

[25] E.A. Spiridovitch, Improving the reliability of gas pipelines in conditions of stress corrosion cracking dissertation of Dr Sci. (Eng.), Мoscow: Gazpom VNIIGAZ, 2014, p.422.

Google Scholar

[26] A.T. Bakesheva, V.G. Fetisov and V.V. Pshenin, A refined algorithm for leak location in gas pipelines with determination of quantitative parameters, International Journal of Engineering Research and Technology. 12(12) (2019) 2867-9.

Google Scholar

[27] A.V. Kasyanov, A.E. Belousov, G.G. Popov and V.I. Bolobov, Determination of factors affecting on grooving corrosion, Topical Issues of Rational Use of Natural Resources. 1 (2020) 393-9.

DOI: 10.1201/9781003014577-49

Google Scholar

[28] G.G. Popov, V.I. Bolobov, et. al., Study of factors enabling initiation and behavior of grooving corrosion, E3S Web of Conferences. 121 (2019) 1-1.

Google Scholar

[29] Zambrano Dzh, S.V. Kovshov and E.A. Lyubin, Ocenka riska avarij, obuslovlennyh prirodnym faktorom, na magistral'nom nefteprovode Pascuales – Cuenca (Ekvador), Journal of Mining Institute. 230 (2018) 190-6.

Google Scholar

[30] R.A. Aliev, V.D. Belousov, A.G. Nemudrov et. al., Truboprovodnyj transport nefti i gaza, 2nd edition, Moscow: Nedra, 1988, p.368.

Google Scholar

[31] State Standard GOST R 51164-98, Steel pipe mains, General requirements for corrosion protection, Moscow: Standartinform, 1998, p.45.

Google Scholar

[32] V. Ashworth, Principles of Cathodic Protection, Shreir's Corrosion (UK: Elsevier) chapter 4, 18 (2010) 2747-62.

Google Scholar

[33] F.M. Mustafin, L.I. Bykov, A.G. Gumerov et. al., Zashchita truboprovodov ot korrozii, St. Petersburg: Nedra, vol. 2, p.708.

Google Scholar

[34] CHen' Cyun', Sovershenstvovanie passivnoj sistemy zashchity truboprovodov ot korrozii dissertation of Dr Sci. (Eng.), Ufa: Ufa State Oil Technical University, 2017, p.149.

Google Scholar

[35] M. Latino, F. Varela, Y. Tan and M. Forsyth, The effect of ageing on cathodic protection shielding by fusion bonded epoxy coatings, Prog. Org. Coat. 134 (2019) 58–65.

DOI: 10.1016/j.porgcoat.2019.04.074

Google Scholar

[36] R.V. Aginey, A.S. Kuz'bozhev, Yu.V. Aleksandrov, V.N. Yushmanov and E.V. Burdinskij, Method to assess technical condition of insulation coating of underground pipeline, Patent N 2469238 RF bull 34 (2012).

Google Scholar