Study the Effect of Reaction Time on Preparation of Iron Oxide Nanoparticles by Hydrothermal Technique

Article Preview

Abstract:

In this research, a homemade autoclave reactor was used for preparing iron oxide nanoparticles by hydrothermal technique at different reaction times by using ferric chloride, ferrous sulfate, and ammonium hydroxide as raw materials. The XRD characterization showed that the nanoparticles of the samples have high crystallinity with the crystal phase of magnetite, furthermore, the crystal phase of hematite appears clearly as the reaction time increased. The SEM results showed when the time of reaction increased the average particle size increased too from 28.1 to 49.2 nm. That means the reaction time is an effective parameter for the nanoparticle's growth, The EDX spectrum verified the confirmation of iron oxide nanoparticles by the appearance of Iron and Oxygen peaks. The FT-IR results showed that all samples have an absorption peak at about 578 cm-1 corresponding to the Fe-O bond stretching modes of the in magnetite and the peak of hematite appeared as the reaction time increased above 2 hours which was confirmed with XRD results. Finally, the reaction time is a powerful tool for controlling in size and phase of nanoparticle preparation. Keywords: Hydrothermal, Iron Oxide, Reaction time, magnetite, and hematite.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1084)

Pages:

23-30

Citation:

Online since:

April 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Bagas, K. Thiya, B. D. N. Asep, Economic Perspective in the Production of Magnetite (Fe3O4) Nanoparticles by Co-Precipitation Method, Chem. Eng. World. Vol. 2, No. 2, (2018): PP.1– 4.

Google Scholar

[2] M. H. N. Assadi, J. J. G. Moreno, D. A. Hanaor, H. K. Yoshida, Exceptionally high saturation magnetisation in Eu-doped magnetite stabilised by spin–orbit interaction, Phys. Chem. Chem. Phys. Vol.23, No.36, (2021), PP. 20129-20137. ‏

DOI: 10.1039/d1cp02164h

Google Scholar

[3] M. A. Subhan, P. C. Saha, J. Ahmed, A. M. Asiri, M. Al-Mamun, M. M. Rahman, Development of an ultra-sensitive paranitrophenol sensor using tri-metallic oxide MoO2· Fe3O4· CuO nanocomposites, Adv. Mater. Vol. 1, No.8, (2020), PP. 2831-2839. ‏

DOI: 10.1039/d0ma00629g

Google Scholar

[4] A. B. Taha, M. Sh. Essa, B. T. Chiad, Spectroscopic Study of Iron Oxide Nanoparticles Synthesized Via Hydrothermal Method, Chem. Methodol. Vol. 6, No. 12, (2022), PP.977-984

Google Scholar

[5] S. Saqib, M.F.H. Munis, W. Zaman, F. Ullah, S.N. Shah, A. Ayaz, S. Bahadur, Synthesis, characterization and use of iron oxide nanoparticles for antibacterial activity, Microsc. Res. Tech., Vol. 82, No. 4, (2019), PP.415-420.

DOI: 10.1002/jemt.23182

Google Scholar

[6] R.B. Ayed, M. Ajili, N.K. Turki. Physical properties and Rietveld analysis of Fe2O3 thin films prepared by spray pyrolysis: effect of precursor concentration, Phys. B: Condens. Matter, Vol.563, (2019), PP. 30-35. ‏

DOI: 10.1016/j.physb.2019.03.029

Google Scholar

[7] A. Benhammada, D. Trache, M. Kesraoui, A.F. Tarchoun, S. Chelouche, A. Mezroua, Synthesis and characterization of α-Fe2O3 nanoparticles from different precursors and their catalytic effect on the thermal decomposition of nitrocellulose. Thermochim. Acta, Vol. 686, (2019), P.178570. ‏

DOI: 10.1016/j.tca.2020.178570

Google Scholar

[8] A.M. Nahrawy, A.B.A. Hammad, T.I. Shaheen, A.M. Mansour, Sol-gel synthesis and physical characterization of high impact polystyrene nanocomposites based on Fe2O3 doped with ZnO, Appl. Phys. A. Vol.126, No. 8, (2020), PP. 1-11. ‏

DOI: 10.1007/s00339-020-03822-w

Google Scholar

[9] A.E. Yachmenev, S.S. Pushkarev, R.R. Reznik, R.A. Khabibullin, D.S. Ponomarev, Arsenides and related III-V materials-based multilayered structures for terahertz applications: Various designs and growth technology, Prog. Cryst. Growth Charact. Mater. Vol. 66, No. 2, (2020), P. 100485.

DOI: 10.1016/j.pcrysgrow.2020.100485

Google Scholar

[10] O. Karaagac, H. Köçkar, the effects of temperature and reaction time on the formation of manganese ferrite nanoparticles synthesized by hydrothermal method, J. Mater. Sci. Mater. Vol. 31, No. 3, (2020), PP.2567-2574. ‏

DOI: 10.1007/s10854-019-02795-8

Google Scholar

[11] A. G. Nonaka, M. A. Batista, A. C. S. D. Costa, T. T. Inoue, T. G. M. Bonadio, I. G. D Souza, Kinetics of Thermal Transformation of Synthetic Al-Maghemites into Al-Hematites, Revi. Brasi. de Ciên. do Solo. Vol. 41, (2017), PP. 1-13.

DOI: 10.1590/18069657rbcs20160384

Google Scholar

[12] F. Ozel, H. Kockar, O. Karaagac, Growth of iron oxide nanoparticles by hydrothermal process: effect of reaction parameters on the nanoparticle size, J. Super cond. Nove Magn.Vol.28 (2015), PP. 823-829

DOI: 10.1007/s10948-014-2707-9

Google Scholar

[13] M. Rabiei, A. Palevicius, A. Monshi, S. Nasiri, A. Vilkauskas, G. Janusas, comparing methods for calculating nano crystal size of natural hydroxyapatite using X-ray diffraction, J. Nanomater. Vol. 10, No. 9, (2020), P. 1627. ‏

DOI: 10.3390/nano10091627

Google Scholar

[14] Y. Zhang, S. Guo, P. Zhang, J Zhong, W. Liu, Iron oxide magnetic nanoparticles based low-field MR thermometry, Nanotechnology. Vol.31, No.34, (2020), P. 345101. ‏

DOI: 10.1088/1361-6528/ab932b

Google Scholar

[15] J. Zhang, F. Huang, Z. Lin, Progress of nanocrystalline growth kinetics based on oriented attachment, Nanoscale. Vol. 2, No. 1, (2010), PP. 18-34.

DOI: 10.1039/b9nr00047j

Google Scholar

[16] B. Udvardi, I. J. Kovács, T. Fancsik, P. Kónya, M. Bátori, F. Stercel, Z. Szalai, Effects of particle size on the attenuated total reflection spectrum of minerals, J. Appl. Spectrosc.Vol. 71, No. 6, (2017), PP.1157-1168. ‏

DOI: 10.1177/0003702816670914

Google Scholar

[17] A. S. Jawad, A.F. Al-Alawy, Synthesis and characterization of coated magnetic nanoparticles and its application as coagulant for removal of oil droplets from oilfield produced water, AIP Conf. Proc. Vol. 2213, No. 1, (2020) P. 020174.

DOI: 10.1063/5.0000279

Google Scholar

[18] E. M. El Afifi , M.F. Attallah, E.H. Borai , J., Utilization of natural hematite as reactive barrier for immobilization of radionuclides from radioactive liquid waste, J. Environ. Radioact., Vol. 1(2016), PP. 156-165.

DOI: 10.1016/j.jenvrad.2015.10.001

Google Scholar

[19] J. Lewandowska-Łańcucka, M. Staszewska, M. Szuwarzyński, M. Kępczyński, M. Romek, W. Tokarz, M. Nowakowska, Synthesis and characterization of the superparamagnetic iron oxide nanoparticles modified with cationic chitosan and coated with silica shell. J allo. comp., Vol. 586 (2014), PP. 45- 51.

DOI: 10.1016/j.jallcom.2013.10.039

Google Scholar

[20] D. Mishra, R. Arora, S. Lahiri, S.S. Amritphale, N. Chandra, Synthesis and characterization of iron oxide nanoparticles by solvothermal method. Prote. Meta.Phys. Chem. Surf., Vol. 50 (2014), PP. 628–631.

DOI: 10.1134/s2070205114050128

Google Scholar