Characteristics and Biological Applications of Green Nickel Oxide Synthesised by Hibiscus Sabdariffa Flowers

Article Preview

Abstract:

This study used Hibiscus sabdariffa flowers to prepare and characterise nickel oxide nanoparticles that are non-toxic and environmentally advantageous (green synthesis). After two hours of heat treatment at 600 °C, XRD was employed to validate the cubic crystal structure of NiO-NPs. The crystal plane (200) corresponded to the optimal peak on the XRD, With an average crystalline size, as per Williamson-Hall's formula, is 46.26 nm, while as per Scherrer's formula, it is 24.40 nm. At 524, 420, and 468 cm-1, the FT-IR spectrum revealed a Ni-O vibration band. Throughout the surface microscopic analysis, Field-Emission Scanning Electron Microscopy (FE-SEM) revealed smooth, cylindrical rod-like crystals. As per the UV-Vis spectral curve, NiO-NPs had a direct bandgap (Eg) of 2.91 eV. NiO-NPs nanoparticles were shown to be more effective against gram-negative bacteria in terms of biological activities. P. aeruginosa was significantly more severely harmed than S. aureus.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1084)

Pages:

31-40

Citation:

Online since:

April 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. Mayedwa, N. Mongwaketsi, S. Khamlich, K. Kaviyarasu, N. Matinise and M. Maaza, "Green synthesis of nickel oxide, palladium and palladium oxide synthesized via Aspalathus linearis natural extracts: physical properties & mechanism of formation", Applied Surface Science, vol. 446, pp.266-272, 2018.

DOI: 10.1016/j.apsusc.2017.12.116

Google Scholar

[2] R. Lontio Fomekong, J. Ngolui Lambi, G. Ebede, P. Kenfack Tsobnang, H. Tedjieukeng Kamta, C. Ngnintedem Yonti and A. Delcorte, "Effective reduction in the nanoparticle sizes of NiO obtained via the pyrolysis of nickel malonate precursor modified using oleylamine surfactant", Journal of Solid State Chemistry, vol. 241, pp.137-142, 2016.

DOI: 10.1016/j.jssc.2016.06.012

Google Scholar

[3] Z. Wang, T. Jiang and L. Xu, "Toward the blue energy dream by triboelectric nanogenerator networks", Nano Energy, vol. 39, pp.9-23, 2017.

DOI: 10.1016/j.nanoen.2017.06.035

Google Scholar

[4] G. Cirillo, S. Hampel, U. Spizzirri, O. Parisi, N. Picci and F. Iemma, "Carbon Nanotubes Hybrid Hydrogels in Drug Delivery: A Perspective Review", BioMed Research International, vol. 2014, pp.1-17, 2014.

DOI: 10.1155/2014/825017

Google Scholar

[5] M. Cortez-Valadez, A. Vargas-Ortiz, L. Rojas-Blanco, H. Arizpe-Chávez, M. Flores-Acosta and R. Ramírez-Bon, "Additional active Raman modes in α-PbO nanoplates", Physica E: Low-dimensional Systems and Nanostructures, vol. 53, pp.146-149, 2013.

DOI: 10.1016/j.physe.2013.05.006

Google Scholar

[6] A. Ezhilarasi, J. Vijaya, K. Kaviyarasu, M. Maaza, A. Ayeshamariam and L. Kennedy, "Green synthesis of NiO nanoparticles using Moringa oleifera extract and their biomedical applications: Cytotoxicity effect of nanoparticles against HT-29 cancer cells", Journal of Photochemistry and Photobiology B: Biology, vol. 164, pp.352-360, 2016.

DOI: 10.1016/j.jphotobiol.2016.10.003

Google Scholar

[7] B. Sasi, K. Gopchandran, P. Manoj, P. Koshy, P. Prabhakara Rao and V. Vaidyan, "Preparation of transparent and semiconducting NiO films", Vacuum, vol. 68, no. 2, pp.149-154, 2002.

DOI: 10.1016/s0042-207x(02)00299-3

Google Scholar

[8] Y. Lu. Y.H. Ma, S.Y. Ma, W.X. Jin, S.H. Yan, X.L. Xu, X.H. Jiang, T.T. Wang, H.M. Yang, H. Chen and Z. Qiang, "Synthesis of cactus-like NiO nanostructure and their gas-sensing properties", Materials Letters, vol. 164, pp.48-51, 2016.

DOI: 10.1016/j.matlet.2015.10.117

Google Scholar

[9] V. Usha, S. Kalyanaraman, R. Vettumperumal and R. Thangavel, "A study of frequency dependent electrical and dielectric properties of NiO nanoparticles", Physica B: Condensed Matter, vol. 504, pp.63-68, 2017.

DOI: 10.1016/j.physb.2016.10.011

Google Scholar

[10] A. Khalil, M. Ovais, I. Ullah, M. Ali, Z. Shinwari, D. Hassan, and M. Maaza, "Sageretia thea (Osbeck.) modulated biosynthesis of NiO nanoparticles and their in vitro pharmacognostic, antioxidant and cytotoxic potential", Artificial Cells, Nanomedicine, and Biotechnology, vol. 46, no. 4, pp.838-852, 2017.

DOI: 10.1080/21691401.2017.1345928

Google Scholar

[11] F. Thema, P. Beukes, A. Gurib-Fakim and M. Maaza, "Green synthesis of Monteponite CdO nanoparticles by Agathosma betulina natural extract", Journal of Alloys and Compounds, vol. 646, pp.1043-1048, 2015.

DOI: 10.1016/j.jallcom.2015.05.279

Google Scholar

[12] K. Kaviyarasu, A. Ayeshamariam, E. Manikandan, J. Kennedy, R. Ladchumananandasivam, U. Umbelino Gomes, M. Jayachandran and M. Maaza, "Solution processing of CuSe quantum dots: Photocatalytic activity under RhB for UV and visible-light solar irradiation", Materials Science and Engineering: B, vol. 210, pp.1-9, 2016.

DOI: 10.1016/j.mseb.2016.05.002

Google Scholar

[13] A. Kar, "Synthesis of Nano-Spherical Nickel by Templating Hibiscus Flower Petals", American Journal of Nanoscience and Nanotechnology, vol. 2, no. 2, p.17, 2014.

DOI: 10.11648/j.nano.20140202.11

Google Scholar

[14] D. Mahendiran, G. Subash, D. Arumai Selvan, D. Rehana, R. Senthil Kumar and A. Kalilur Rahiman, "Biosynthesis of Zinc Oxide Nanoparticles Using Plant Extracts of Aloe vera and Hibiscus sabdariffa: Phytochemical, Antibacterial, Antioxidant and Anti-proliferative Studies", BioNanoScience, vol. 7, no. 3, pp.530-545, 2017.

DOI: 10.1007/s12668-017-0418-y

Google Scholar

[15] C. Okereke, F. Iroka, M. Chukwuma, "Phytochemical analysis and medicinal uses of Hibiscus sabdariffa", International journal of Herbal medicine, vol. 2, no. 6, pp.16-19, 2015.

Google Scholar

[16] S.K. Noukelag, H. Mohamed, B. Moussa, L. C. Razanamahandry, S. Ntwampe and C.J. Arendse, " Structural and optical investigations of biosynthesized bunsenite NiO nanoparticles (NPs) via an aqueous extract of Rosmarinus officinalis (rosemary) leaves", Materials Today: Proceedings, vol. 36, pp.245-250, 2021.

DOI: 10.1016/j.matpr.2020.03.314

Google Scholar

[17] F. T. Thema, E. Manikandan, A. Gurib-Fakim and M.Maaza, " Single phase Bunsenite NiO nanoparticles green synthesis by Agathosma betulina natural extract", Journal of Alloys and Compounds, vol. 657, pp.655-661, 2016.

DOI: 10.1016/j.jallcom.2015.09.227

Google Scholar

[18] R. Goel, R. Jha, C. Ravikant, " Investigating the structural, electrochemical, and optical properties of p-type spherical nickel oxide (NiO) nanoparticles", Journal of Physics and Chemistry of Solids, vol. 144, p.109488, 2020.

DOI: 10.1016/j.jpcs.2020.109488

Google Scholar

[19] N. A. Bakr, Z. T. Khodair, and S. M. Hassan, "Effect of substrate temperature on structural and optical properties of Cu2ZnSnS4 (CZTS) films prepared by chemical spray pyrolysis method", Research Journal of Chemical Sciences, vol. 5, no. 10, pp.51-61, 2015.

Google Scholar

[20] A. O. Maia, C. T. Meneses, A. S. Menezes, W. H. Flores, D. M. Melo, and J. M. Sasaki, "Synthesis and X-ray structural characterization of NiO nanoparticles obtained through gelatin", Journal of non-crystalline solids, vol. 352, pp.3729-3733, 2006. ‏

DOI: 10.1016/j.jnoncrysol.2006.03.103

Google Scholar

[21] N. S. Gonçalves, J. A. Carvalho, Z. M. Lima, and J. M. Sasaki, "Size–strain study of NiO nanoparticles by X-ray powder diffraction line broadening", Materials Letters, vol. 72, pp.36-38, 2012.‏

DOI: 10.1016/j.matlet.2011.12.046

Google Scholar

[22] K. Varunkumar, R. Hussain, G. Hegde and A. Ethiraj, " Effect of calcination temperature on Cu doped NiO nanoparticles prepared via wet-chemical method: Structural, optical and morphological studies", Materials Science in Semiconductor Processing, vol. 66, pp.149-156, 2017.

DOI: 10.1016/j.mssp.2017.04.009

Google Scholar

[23] Z. Sabouri, A. Akbari, H. Hosseini, M. Khatami and M. Darroudi, " Egg white-mediated green synthesis of NiO nanoparticles and study of their cytotoxicity and photocatalytic activity", Polyhedron, vol. 178, p.114351, 2020.

DOI: 10.1016/j.poly.2020.114351

Google Scholar

[24] P. Mishra, S. Ray, S. Sinha, B. Das, M. Khan, S. Behera, S. Yun, S. Tripathy and A. Mishra, " Facile bio-synthesis of gold nanoparticles by using extract of Hibiscus sabdariffa and evaluation of its cytotoxicity against U87 glioblastoma cells under hyperglycemic condition", Biochemical Engineering Journal, vol. 105, pp.264-272, 2016.

DOI: 10.1016/j.bej.2015.09.021

Google Scholar

[25] S. Taib, K. Shameli, P. Nia, M. Etesami, M. Miyake, R. Ali, E. Abouzari-Lotf and Z. Izadiyan, "Electrooxidation of nitrite based on green synthesis of gold nanoparticles using Hibiscus sabdariffa leaves", Journal of the Taiwan Institute of Chemical Engineers, vol. 95, pp.616-626, 2019.

DOI: 10.1016/j.jtice.2018.09.021

Google Scholar

[26] M. Revathy, R. Suman, N. Jayram, D. Geetha, and T. Chitravel, " Multifarious properties of Bunsenite nanosphere NiO using coprecipitation method", Materials Today: Proceedings, vol. 33, pp.1165-1174, 2020.

DOI: 10.1016/j.matpr.2020.07.411

Google Scholar

[27] B. Sone, X. Fuku, and M. Maaza, " Physical & Electrochemical Properties of Green Synthesized Bunsenite NiO Nanoparticles via Callistemon Viminalis' Extracts", Int. J. Electrochem. Sci., vol. 11, pp.8204-8220, 2016.

DOI: 10.20964/2016.10.17

Google Scholar

[28] C. Soto-Robles, P. Luque, C. Gómez-Gutiérrez, O. Nava. A. Vilchis-Nestor, E. Lugo-Medina, R. Ranjithkumar, and A. Castro-Beltrán, "Study on the effect of the concentration of Hibiscus sabdariffa extract on the green synthesis of ZnO nanoparticles", Results in Physics, vol. 15, p.102807, 2019.

DOI: 10.1016/j.rinp.2019.102807

Google Scholar

[29] H. Lim, B. Horri, and B. Salamatinia, "Synthesis and Characterizations of Nickel (II) Oxide Sub-Micro Rods via co-precipitation Methods", IOP Conference Series: Materials Science and Engineering, vol. 398, p.012033, 2018.

DOI: 10.1088/1757-899x/398/1/012033

Google Scholar

[30] A. Kumar, and P. Sahay, "Lithium doping in spray-pyrolyzed NiO thin films: results on their microstructural, optical and electrochromic properties", Applied Physics A, vol. 127, pp.286-2021.

DOI: 10.1007/s00339-021-04436-6

Google Scholar

[31] M. Abed, N. Bakr, and S. Mohammed, " Synthesis and Characterization of Chemically Sprayed Cu2FeSnS4 (CFTS) Thin Films: The Effect of Substrate Temperature", Materials Science Forum, vol. 1039, pp.434-441, 2021.

DOI: 10.4028/www.scientific.net/msf.1039.434

Google Scholar

[32] A. Gandhi, and S. Wu. "Strong deep-level-emission photoluminescence in NiO nanoparticles.", Nanomaterials, vol.7, no.8, p.231, 2017.‏ ‏[33] N. Hosny, "Synthesis, characterization and optical band gap of NiO nanoparticles derived from anthranilic acid precursors via a thermal decomposition route", Polyhedron, vol. 30, no. 3, pp.470-476, 2011.

DOI: 10.1016/j.poly.2010.11.020

Google Scholar

[34] D. Mahendiran, G. Subash, D. Arumai Selvan, Dilaveez Rehana, R. Senthil Kumar and A. Kalilur Rahiman, " Biosynthesis of Zinc Oxide Nanoparticles Using Plant Extracts of Aloe vera and Hibiscus sabdariffa: Phytochemical, Antibacterial, Antioxidant and Anti-proliferative Studies", BioNanoScience, vol. 7, p.530–545, 2017.

DOI: 10.1007/s12668-017-0418-y

Google Scholar

[35] S. Bhat, F. Zafar, A. Mondal, A. Kareem, A. Mirza, S. Khan, A. Mohammad, Q. Haq, and N. Nishat, "Photocatalytic degradation of carcinogenic Congo red dye in aqueous solution, antioxidant activity and bactericidal effect of NiO nanoparticles", Journal of the Iranian Chemical Society, vol. 17, p.215–227, 2020.

DOI: 10.1007/s13738-019-01767-3

Google Scholar

[36] K. Khashan, G. Sulaiman, A. Hamad, F. Abdulameer, and A. Hadi, "Generation of NiO nanoparticles via pulsed laser ablation in deionised water and their antibacterial activity", Applied Physics A, vol. 123, p.190, 2017.

DOI: 10.1007/s00339-017-0826-4

Google Scholar