Preparation of Silica Nanoparticles from Waste Product of Zirconium Carbide Facility

Article Preview

Abstract:

Herein, silica nanoparticles (SiO2 NPs) were synthesized from a waste product of the zirconium carbide facility (WPZF). Firstly, the WPZF was characterized by using physical and chemical methods like X-ray powder diffraction (XRD), field emission scanning electron microscope (FE-SEM), Fourier-transform infrared spectroscopy (FT-IR), and energy dispersive X-ray analysis (EDXA) methods. Then WPZF proceeded via chemical reagents to synthesize SiO2 NPs by using the sol-gel method. Obtained SiO2 NPs were characterized by using XRD, SEM, EDXA, and transmission electron microscopy (TEM) methods. The yield of SiO2 NPs reached up to 96.5% and particles were spherical with a diameter of 20 ± 3 nm. Most importantly observed SiO2 NPs in this procedure has an amorphous structure.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1088)

Pages:

111-122

Citation:

Online since:

May 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E.R. Cruz-Chu, A. Aksimentiev, K. Schulten, Water− silica force field for simulating nanodevices, J. Phys. Chem. B 110 (2006) 21497-21508.

DOI: 10.1021/jp063896o

Google Scholar

[2] D.A. Muller, T. Sorsch, S. Moccio, F. Baumann, K. Evans-Lutterodt, G. Timp, The electronic structure at the atomic scale of ultrathin gate oxides, Nature, 399 (1999) 758-761.

DOI: 10.1038/21602

Google Scholar

[3] S.K. Malpani, D. Goyal, Synthesis, analysis, and multi-faceted applications of solid wastes-derived silica nanoparticles: a comprehensive review (2010–2022), Environ. Sci. Pollut. Res. (2022) 1-23.

DOI: 10.1007/s11356-022-23873-1

Google Scholar

[4] P. Goswami, J. Mathur, Application of agro-waste-mediated silica nanoparticles to sustainable agriculture, Bioresour. Bioprocess. 9 (2022) 1-12.

DOI: 10.1186/s40643-022-00496-5

Google Scholar

[5] D.R. Negrao, A. Grandis, M.S. Buckeridge, G.J. Rocha, M.R.L. Leal, C. Driemeier, Inorganics in sugarcane bagasse and straw and their impacts for bioenergy and biorefining: A review, Renewable Sustainable Energy Rev. 148 (2021) 111268.

DOI: 10.1016/j.rser.2021.111268

Google Scholar

[6] A. Thirunavukkarasu, R. Nithya, R. Sivashankar, A review on the role of nanomaterials in the removal of organic pollutants from wastewater, Rev. Environ. Sci. Biotechnol. 19 (2020) 751-778.

DOI: 10.1007/s11157-020-09548-8

Google Scholar

[7] C. Faizul, C. Abdullah, B. Fazlul, Review of extraction of silica from agricultural wastes using acid leaching treatment, Adv. Mater. Res. 626 (2013) 997-1000.

DOI: 10.4028/www.scientific.net/amr.626.997

Google Scholar

[8] P.E. Imoisili, E.C. Nwanna, T.-C. Jen, Facile Preparation and Characterization of Silica Nanoparticles from South Africa Fly Ash Using a Sol–Gel Hydrothermal Method, Processes, 10 (2022) 2440.

DOI: 10.3390/pr10112440

Google Scholar

[9] P.E. Imoisili, K.O. Ukoba, T.-C. Jen, Green technology extraction and characterisation of silica nanoparticles from palm kernel shell ash via sol–gel, J. Mater. Res. Technol. 9 (2020) 307-313.

DOI: 10.1016/j.jmrt.2019.10.059

Google Scholar

[10] Y. Mehmood, I.U. Khan, Y. Shahzad, S.H. Khalid, S. Asghar, M. Irfan, M. Asif, I. Khalid, A.M. Yousaf, T. Hussain, Facile synthesis of mesoporous silica nanoparticles using modified solgel method: Optimization and In Vitro cytotoxicity studies, Pak. J. Pharm. Sci, 32 (2019) 1805-1812.

DOI: 10.1016/j.ejps.2019.105184

Google Scholar

[11] A. Barhoum, J. Jeevanandam, A. Rastogi, P. Samyn, Y. Boluk, A. Dufresne, M.K. Danquah, M. Bechelany, Plant celluloses, hemicelluloses, lignins, and volatile oils for the synthesis of nanoparticles and nanostructured materials, Nanoscale, 12 (2020) 22845-22890.

DOI: 10.1039/d0nr04795c

Google Scholar

[12] V. Mahalingam, M. Sivaraju, Microwave-Assisted Sol-Gel Synthesis of Silica Nanoparticles Using Rice Husk as a Precursor for Corrosion Protection Application, Silicon, (2022) 1-9.

DOI: 10.1007/s12633-022-02153-0

Google Scholar

[13] S. Rovani, J.J. Santos, P. Corio, D.A. Fungaro, Highly pure silica nanoparticles with high adsorption capacity obtained from sugarcane waste ash, ACS Omega, 3 (2018) 2618-2627.

DOI: 10.1021/acsomega.8b00092

Google Scholar

[14] D. Kavaz, Synthesis of silica nanoparticles from agricultural waste, Agri-Waste and Microbes for Production of Sustainable Nanomaterials, Elsevier2022, pp.121-138.

DOI: 10.1016/b978-0-12-823575-1.00028-7

Google Scholar

[15] N. Shahi, P. Wang, S. Adhikari, B. Min, V.K. Rangari, Biopolymers fractionation and synthesis of nanocellulose/silica nanoparticles from agricultural byproducts, ACS Sustain. Chem. Eng. 9 (2021) 6284-6295.

DOI: 10.1021/acssuschemeng.0c09342

Google Scholar

[16] M. Yadav, V. Dwibedi, S. Sharma, N. George, Biogenic silica nanoparticles from agro-waste: Properties, mechanism of extraction and applications in environmental sustainability, J. Environ. Chem. Eng. (2022) 108550.

DOI: 10.1016/j.jece.2022.108550

Google Scholar

[17] S.S. Hossain, L. Mathur, P. Roy, Rice husk/rice husk ash as an alternative source of silica in ceramics: A review, J. Asian Ceram. Soc. 6 (2018) 299-313.

DOI: 10.1080/21870764.2018.1539210

Google Scholar

[18] V. Vaibhav, U. Vijayalakshmi, S.M. Roopan, Agricultural waste as a source for the production of silica nanoparticles, Spectrochim. Acta A Mol. Biomol. Spectrosc. 139 (2015) 515-520.

DOI: 10.1016/j.saa.2014.12.083

Google Scholar

[19] S.S. Danewalia, G. Sharma, S. Thakur, K. Singh, Agricultural wastes as a resource of raw materials for developing low-dielectric glass-ceramics, Sci. Rep. 6 (2016) 1-12.

DOI: 10.1038/srep24617

Google Scholar

[20] M. Ghanimati, M. Jabbari, A. Farajtabar, S.A. Nabavi-Amri, Adsorption kinetics and isotherms of bioactive antioxidant quercetin onto amino-functionalized silica nanoparticles in aqueous ethanol solutions, New J. Chem. 41 (2017) 8451-8458.

DOI: 10.1039/c7nj01489a

Google Scholar

[21] D. An, Y. Guo, Y. Zhu, Z. Wang, A green route to preparation of silica powders with rice husk ash and waste gas, Chem. Eng. J. 162 (2010) 509-514.

DOI: 10.1016/j.cej.2010.05.052

Google Scholar

[22] M.K. Delivand, M. Barz, S.H. Gheewala, B. Sajjakulnukit, Economic feasibility assessment of rice straw utilization for electricity generating through combustion in Thailand, Appl. Energy, 88 (2011) 3651-3658.

DOI: 10.1016/j.apenergy.2011.04.001

Google Scholar

[23] K. Omatola, A. Onojah, Elemental analysis of rice husk ash using X-ray fluorescence technique, Int. J. Phys. Sci. 4 (2009) 189-193.

Google Scholar

[24] C. Real, M.D. Alcala, J.M. Criado, Preparation of silica from rice husks, J. Am. Ceram. Soc. 79 (1996) 2012-2016.

Google Scholar

[25] Y. Nakata, M. Suzuki, T. Okutani, M. Kikuchi, T. Akiyama, Preparation and properties of SiO2 from rice hulls, J. Ceram. Soc. Jpn. 97 (1989) 842-849.

DOI: 10.2109/jcersj.97.842

Google Scholar

[26] U. Kalapathy, A. Proctor, J. Shultz, A simple method for production of pure silica from rice hull ash, Bioresour. Technol. 73 (2000) 257-262.

DOI: 10.1016/s0960-8524(99)00127-3

Google Scholar

[27] A. Chakraverty, P. Mishra, H. Banerjee, Investigation of combustion of raw and acid-leached rice husk for production of pure amorphous white silica, J. Mater. Sci. 23 (1988) 21-24.

DOI: 10.1007/bf01174029

Google Scholar

[28] C. Musa, R. Licheri, R. Orrù, G. Cao, D. Sciti, L. Silvestroni, L. Zoli, A. Balbo, L. Mercatelli, M. Meucci, Processing, mechanical and optical properties of additive-free ZrC ceramics prepared by spark plasma sintering, Mater. 9 (2016) 489.

DOI: 10.3390/ma9060489

Google Scholar

[29] A. Maitre, P. Lefort, Solid state reaction of zirconia with carbon, Solid State Ion. 104 (1997) 109-122.

DOI: 10.1016/s0167-2738(97)00398-6

Google Scholar

[30] U. Vijayalakshmi, S. Rajeswari, Development of silica glass coatings on 316L SS and evaluation of its corrosion resistance behavior in Ringer's solution, Metall. Mater. Trans. A 43 (2012) 4907-4919.

DOI: 10.1007/s11661-012-1283-5

Google Scholar