[1]
N.C. Menz, Post-Fire Assessment of Concrete Tunnel Structures, Structural Engineering and Mechanics, 2021.
Google Scholar
[2]
N. Hua, N. Elhami-Khorasani, A. Tessari, Review of tunnel fire damage assessment methods and techniques, Transportation research record. 2675 (2021) 279-290.
DOI: 10.1177/0361198120987228
Google Scholar
[3]
P. Alcaíno, H. Santa-María, C. Magna-Verdugo, L. López, Experimental fast-assessment of post-fire residual strength of reinforced concrete frame buildings based on non-destructive tests, Constr. Build. Mater. 234 (2020) 117371.
DOI: 10.1016/j.conbuildmat.2019.117371
Google Scholar
[4]
J.C. Liu, K.H. Tan, Y. Yao, A new perspective on nature of fire-induced spalling in concrete, Constr. Build. Mater. 184 (2018) 581-590.
DOI: 10.1016/j.conbuildmat.2018.06.204
Google Scholar
[5]
S. Rawat, C. Lee, Y. Zhang, Performance of fibre-reinforced cementitious composites at elevated temperatures: A review, Constr. Build. Mater. 292 (2021) 123382.
DOI: 10.1016/j.conbuildmat.2021.123382
Google Scholar
[6]
S.M. Malik, S. Bhattacharyya, S.V. Barai, Thermal and mechanical properties of concrete and its constituents at elevated temperatures: A review, Constr. Build. Mater. 270 (2021) 121398.
DOI: 10.1016/j.conbuildmat.2020.121398
Google Scholar
[7]
P. Bamonte, P.G. Gambarova, High-temperature behavior of SCC in compression: Comparative study on recent experimental campaigns, J. Mater. Civ. Eng. 28 (2016) 04015141.
DOI: 10.1061/(asce)mt.1943-5533.0001378
Google Scholar
[8]
F. Stochino, F. Mistretta1, P. Meloni, G. Carcangiu, Integrated Approach for Post-fire Reinforced Concrete Structures Assessment, Periodica Polytechnica Civ. Eng. 61 (2017) 677-699.
DOI: 10.3311/ppci.9830
Google Scholar
[9]
O. Arioz, Effects of elevated temperatures on properties of concrete, Fire Saf. J. 42 (2007) 516-522.
DOI: 10.1016/j.firesaf.2007.01.003
Google Scholar
[10]
M. Ezziane, L. Molez, I. Messaoudene, Non-destructive characterisation of mortars reinforced with various fibres exposed to high temperature, Mining Science. 25 (2018) 179-194.
Google Scholar
[11]
S. Guler, Z.F Akbulut, H. Siad, Effect of macro polypropylene, polyamide and steel fibres on the residual properties of SCC at ambient and elevated temperatures, Constr. Build. Mater. 289 (2021) 123154.
DOI: 10.1016/j.conbuildmat.2021.123154
Google Scholar
[12]
M. Ezziane, Formulation et tenue au feu des matériaux cimentaires renforcés de fibres de différentes natures, Thèse de doctorat, INSA Rennes 2012.
Google Scholar
[13]
C.S. Poon, S. Azhar, M. Anson, Y.L. Wong, Comparison of the strength and durability performance of normal-and high-strength pozzolanic concretes at elevated temperatures, Cem Concr Res. 31 (2001) 1291-1300.
DOI: 10.1016/s0008-8846(01)00580-4
Google Scholar
[14]
J. Brozovsky, Ultrasonic pulse and resonance method–evaluation of the degree of damage to the internal structure of repair mortars caused by exposure to high temperatures, Russian J. of Nondestructive Testing. 53 (2017) 744-753.
DOI: 10.1134/s1061830917100047
Google Scholar
[15]
O. Babalola, P.O. Awoyera, D.H. Le, L.M. Bendezú Romeroc, A review of residual strength properties of normal and high strength concrete exposed to elevated temperatures: Impact of materials modification on behaviour of concrete composite, Constr. Build. Mater. 296 (2021) 123448.
DOI: 10.1016/j.conbuildmat.2021.123448
Google Scholar
[16]
H. Wu, X. Lin, A. Zhou, A review of mechanical properties of fibre reinforced concrete at elevated temperatures, Cem Concr Res. 135 (2020) 106117.
DOI: 10.1016/j.cemconres.2020.106117
Google Scholar
[17]
H. Bian, K. Hannawi, M. Takarli, L. Molez, W. Prince, Effects of thermal damage on physical properties and cracking behavior of ultrahigh-performance fibre-reinforced concrete, J. Mater. Sci. 51 (2016) 10066-10076.
DOI: 10.1007/s10853-016-0233-9
Google Scholar
[18]
M. Fakoor, M. Nematzadeh, A new post-peak behavior assessment approach for effect of steel fibers on bond stress-slip relationship of concrete and steel bar after exposure to high temperatures, Constr. Build. Mater. 278 (2021) 122340.
DOI: 10.1016/j.conbuildmat.2021.122340
Google Scholar
[19]
D. Zhang, Y. Liu, K.H. Tan, Spalling resistance and mechanical properties of strain-hardening ultra-high performance concrete at elevated temperature, Constr. Build. Mater. 266 (2021) 120961.
DOI: 10.1016/j.conbuildmat.2020.120961
Google Scholar
[20]
M. Ezziane, L. Molez, R. Jauberthie, D. Rangeard, Heat exposure tests on various types of fibre mortar, Eur. J. Environ. Civ. Eng. 15 (2011) 715-726.
DOI: 10.1080/19648189.2011.9693360
Google Scholar
[21]
A. Beglarigale, Ç. Yalçinkaya, H. Yiğiter, H. Yazici, Flexural performance of SIFCON composites subjected to high temperature, Constr. Build. Mater. 104 (2016) 99-108.
DOI: 10.1016/j.conbuildmat.2015.12.034
Google Scholar
[22]
D. Breysse, J.P. Balayssac, S. Biondi, D. Corbett, A. Goncalves, M. Grantham, V.A.M. Luprano, A. Masi, A. V. Monteiro, Z.M. Sbartai; Recommendation of RILEM TC249-ISC on non destructive in situ strength assessment of concrete, Mater. Struct. 52 (2019) 1-21.
DOI: 10.1617/s11527-019-1369-2
Google Scholar
[23]
R. Pucinotti, Reinforced concrete structure: Non destructive in situ strength assessment of concrete, Constr. Build. Mater. 75 (2015) 331-341.
DOI: 10.1016/j.conbuildmat.2014.11.023
Google Scholar
[24]
H.H. Almasaeid, A. Suleiman, Alawneh, Assessment of high-temperature damaged concrete using non-destructive tests and artificial neural network modelling, Case Studies Constr. Mater. 16 (2022) e01080.
DOI: 10.1016/j.cscm.2022.e01080
Google Scholar
[25]
V.M. Malhotra, N.J. Carino, Handbook on Nondestructive Testing of Concrete, CRC Press 2003.
Google Scholar
[26]
A. Aseem, W.L. Baloch, R.A. Khushnood, A. Mushtaq, Structural health assessment of fire damaged building using non-destructive testing and micro-graphical forensic analysis: a case study, Case Studies Constr. Mater. 11 (2019) e00258.
DOI: 10.1016/j.cscm.2019.e00258
Google Scholar
[27]
I.O. Yaman, G. Inci, N. Yesiller, H.M. Aktan, Ultrasonic pulse velocity in concrete using direct and indirect transmission, ACI Mater. J. 98 (2001) 450-457.
DOI: 10.14359/10843
Google Scholar
[28]
V. Genovés, A. Carrión, D. Escobar, J. Gosálbez, J. Monzó, M.V. Borrachero, J. Payá, Nonlinear acoustic spectroscopy and frequency sweep ultrasonics: case on thermal damage assessment in mortar, J. of Nondestructive Evaluation. l. 38 (2019) 1-14.
DOI: 10.1007/s10921-019-0599-0
Google Scholar
[29]
G.K. Park, H.J. Yim, Evaluation of fire-damaged concrete: an experimental analysis based on destructive and nondestructive methods, Int. J. Concr. Struct. Mater. 11 (2017) 447-457.
DOI: 10.1007/s40069-017-0211-x
Google Scholar
[30]
K. Ali-Benyahia, Z.M. Sbartaï, B. Denys, M. Ghrici, Improvement of nondestructive assessment of on-site concrete strength: Influence of the selection process of cores location on the assessment quality for single and combined NDT techniques, Constr. Build. Mater. 195 (2019) 613-622.
DOI: 10.1016/j.conbuildmat.2018.10.032
Google Scholar
[31]
M. Abed, J. de Brito, Evaluation of high-performance self-compacting concrete using alternative materials and exposed to elevated temperatures by non-destructive testing, J. Build. Eng. 32 (2020) 101720.
DOI: 10.1016/j.jobe.2020.101720
Google Scholar
[32]
Y. Choi, J.W. Kang, T.Y. Hwang, C.G. Cho, Evaluation of residual strength with ultrasonic pulse velocity relationship for concrete exposed to high temperatures, Adv. Mech. Eng. 13 (2021) 16878140211034992.
DOI: 10.1177/16878140211034992
Google Scholar
[33]
M.R. Abdulkadir, A.A. Karim, A.H. Abdullah, Destructive and Non Destructive Strength Evaluation of Concrete Exposed to Fire, Journal of Zankoy Sulaimani, Part-A-(Pure and Applied Sciences). 19 (2017) 43-55.
DOI: 10.17656/jzs.10631
Google Scholar
[34]
A. Di Maio, G. Giaccio, R. Zerbino, Non-destructive tests for the evaluation of concrete exposed to high temperatures, Cem. Concr. aggregates. 24 (2002) 1-10.
DOI: 10.1520/cca10530j
Google Scholar
[35]
I. Hager, T. Tracz, K. Krzemien, The usefulness of selected non-destructive and destructive methods in the assessment of concrete after fire, Cem. Wapno Beton. 19 (2014) 145-151.
Google Scholar
[36]
Q. Wang, D. Chen, K. Zhu, Z. Zhai, J. Xu, L. Wu, D. Hu, W. Xu, H. Huang, Evaluation Residual Compressive Strength of Tunnel Lining Concrete Structure after Fire Damage Based on Ultrasonic Pulse Velocity and Shear-Wave Tomography, Processes. 10 (2022) 560.
DOI: 10.3390/pr10030560
Google Scholar
[37]
A.M.T Hassan, S.W. Jones, Non-destructive testing of ultra high performance fibre reinforced concrete (UHPFRC): A feasibility study for using ultrasonic and resonant frequency testing techniques, Constr. Build. Mater. 35 (2012) 361-367.
DOI: 10.1016/j.conbuildmat.2012.04.047
Google Scholar
[38]
G. Washer, F. Paul, B.A. Graybeal, J.L. Hartmann, Ultrasonic testing of reactive powder concrete, IEEE Transactions on Ultrasonics, ferroelectrics, and frequency control. 51 (2004) 193-201.
DOI: 10.1109/tuffc.2004.1320767
Google Scholar
[39]
U. Dolinar, G Trtnik, G Turk, T Hozjan, The feasibility of estimation of mechanical properties of limestone concrete after fire using nondestructive methods, Constr. Build. Mater. 228 (2019) 116786.
DOI: 10.1016/j.conbuildmat.2019.116786
Google Scholar
[40]
O. Salawu, Detection of structural damage through changes in frequency: a review, Eng. struct. 19 (1997) 718-723.
DOI: 10.1016/s0141-0296(96)00149-6
Google Scholar
[41]
B. Zima, M. Krajewski, The vibration-based assessment of the influence of elevated temperature on the condition of concrete beams with pultruded GFRP reinforcement, Compos. Struct. 282 (2022) 115040.
DOI: 10.1016/j.compstruct.2021.115040
Google Scholar
[42]
W. H. Khushefati, R. Demirboğa, K. Z. Farhan, Assessment of factors impacting thermal conductivity of cementitious composites - A review, Cleaner Mater. 5 (2022) 100127.
DOI: 10.1016/j.clema.2022.100127
Google Scholar
[43]
W.C. Wang, H.Y. Wang, K.H. Chang, and S.Y. Wang, Effect of high temperature on the strength and thermal conductivity of glass fibre concrete, Constr. Build. Mater. 245 (2020) 118387.
DOI: 10.1016/j.conbuildmat.2020.118387
Google Scholar
[44]
J. Albrektsson, M. Flansbjer, J.E. Lindqvist, R. Jansson, Assessment of concrete structures after fire. SP Technical Research Institute of Sweden 2011.
Google Scholar
[45]
M. Anish, T. Arunkumar, J. Jayaprabakar, S. Al Obaid, S. Alfarraj, M.M. Raj, A. Belay, Thermal Conductivity of Thermally Insulated Concretes in a Nuclear Safety Vessel of Reactor Vault: Experimental Interpretation, Adv. Mater. Sci. Eng. 2022 (2022).
DOI: 10.1155/2022/4493910
Google Scholar
[46]
J. Lemaitre, J. Dufailly, Damage measurements, Eng. Fracture Mechanics. 28 (1987) 643-661.
DOI: 10.1016/0013-7944(87)90059-2
Google Scholar
[47]
Norme, S., EN 206-1-Béton-Partie 1: Spécification, performance, production et conformité. SIA Zurich, 2005.
Google Scholar
[48]
Standardization, E.C.f., Eurocode 2: Design of concrete structures-part 1.2 General rules-structural fire design, CEN Brussels, 2004.
Google Scholar
[49]
Astm, C., 597, Standard test method for pulse velocity through concrete. ASTM International, West Conshohocken, PA, 2009.
Google Scholar
[50]
ASTM, C., Standard test method for fundamental transverse, longitudinal, and torsional resonant frequencies of concrete specimens. Annual book of ASTM standards, 2008.
DOI: 10.1520/c0215-08
Google Scholar
[51]
ASTM, D., 5334-00. Standard Test Method for Determination of Thermal Conductivity of Soil and Soft Rock by Thermal Needle Probe Procedure. ASTM Standards, 2000.
DOI: 10.1520/d5334-22
Google Scholar
[52]
C805/C805M, A. Standard test method for rebound number of hardened concrete, American Society for Testing and Materials West Conshohocken, USA, 2013.
Google Scholar
[53]
G. Karaiskos, A. Deraemaeker, D.G. Aggelis, D. Van Hemelrijck, Monitoring of concrete structures using the ultrasonic pulse velocity method, Smart Mater. Struct. 24 (2015) 113001.
DOI: 10.1088/0964-1726/24/11/113001
Google Scholar
[54]
D.G. Aggelis, E.Z. Kordatos, M. Strantza, D.V. Soulioti, T.E. Matikas, NDT approach for characterization of subsurface cracks in concrete, Constr. Build. Mater. 25 (2011) 3089-3097.
DOI: 10.1016/j.conbuildmat.2010.12.045
Google Scholar
[55]
R. Al Wardany, J. Rhazi, G. Ballivy, J.L. Gallias, K. Saleh, Use of Rayleigh wave methods to detect near surface concrete damage, in 16th WCNDT. 2004.
Google Scholar
[56]
H. K. Sultan, I. Alyaseri, Effects of elevated temperatures on mechanical properties of reactive powder concrete elements, Constr. Build. Mater. 261 (2020) 120555.
DOI: 10.1016/j.conbuildmat.2020.120555
Google Scholar
[57]
A. Di Maio, G. Giaccio, R. Zerbino, Non-destructive tests for the evaluation of concrete exposed to high temperatures, Cem. Concr. Aggregates. 24 (2002) 58-67.
DOI: 10.1520/cca10530j
Google Scholar
[58]
M. Koabaz, N. Renault, P. Pliya, J.L. Gallias, Characterization by the impact-echo method of the high temperature-induced damage on concrete specimens. Int. Rev. Civil Eng. (IRECE). 3 (2012) 457-462.
Google Scholar
[59]
Y. Zhang, Z. Gao, X. Wang, Q. Liu, Predicting the Pore-Pressure and Temperature of Fire-Loaded Concrete by a Hybrid Neural Network, Int. J. Computational Methods. (2022) 2142011.
DOI: 10.1142/s0219876221420111
Google Scholar
[60]
Y. Li, K.H. Tan, E.H. Yang, Influence of aggregate size and inclusion of polypropylene and steel fibres on the hot permeability of ultra-high performance concrete (UHPC) at elevated temperature, Constr. Build. Mater. 169 (2018) 629-637.
DOI: 10.1016/j.conbuildmat.2018.01.105
Google Scholar
[61]
V. Kodur, Properties of Concrete at Elevated Temperatures, ISRN Civ. Eng. 2014.
Google Scholar
[62]
N. Yermak, P. Pliya, A.L. Beaucour, A. Simon, A. Noumowé, Influence of steel and/or polypropylene fibres on the behaviour of concrete at high temperature: Spalling, transfer and mechanical properties, Constr. Build. Mater. 132 (2017) 240-250.
DOI: 10.1016/j.conbuildmat.2016.11.120
Google Scholar
[63]
M.R. Irshidat, N. Al-Nuaimi, M. Rabie, The role of polypropylene microfibres in thermal properties and post-heating behavior of cementitious composites, Mater. J. 13 (2020) 2676.
DOI: 10.3390/ma13122676
Google Scholar
[64]
A. Nassif, E. Burley, S. Ridgen, A new quantitative method of assessing fire damage to concrete structures, Magazine of Concrete Research. 47 (1995) 271-278.
DOI: 10.1680/macr.1995.47.172.271
Google Scholar
[65]
M. Soutsos, D. Breysse, V. Garnier, A. Gonçalves, Non-destructive assessment of concrete structures: Reliability and limits of single and combined techniques, State-of-the-art report of the RILEM technical committee 207-INR. 1, (2012).
DOI: 10.1007/978-94-007-2736-6
Google Scholar
[66]
E. Ahn, M. Shin, J.S. Popovics, R. L Weaver, Effectiveness of diffuse ultrasound for evaluation of micro-cracking damage in concrete, Cem Concr Res. 124 (2019) 105862.
DOI: 10.1016/j.cemconres.2019.105862
Google Scholar
[67]
J.C. Kuri, S. Majhi, P.K. Sarker, A. Mukherjee, Microstructural and non-destructive investigation of the effect of high temperature exposure on ground ferronickel slag blended fly ash geopolymer mortars, J. Build. Eng. 43 (2021) 103099.
DOI: 10.1016/j.jobe.2021.103099
Google Scholar
[68]
P. Panedpojaman, D. Tonnayopas, Rebound hammer test to estimate compressive strength of heat exposed concrete, Constr. Build. Mater. 172 (2018) 387-395.
DOI: 10.1016/j.conbuildmat.2018.03.179
Google Scholar
[69]
H.M. Najm, O. Nanayakkara, M.M.S. Sabri, Destructive and Non-Destructive Evaluation of Fibre-Reinforced Concrete: A Comprehensive Study of Mechanical Properties, Mater. J. 15 (2022) 4432.
DOI: 10.3390/ma15134432
Google Scholar