[1]
W.H. Chen, H.T. Lin, P. K. Nayak, M.P. Chang, and J.L. Huang, 'Sintering behavior and mechanical properties of WC–Al2O3 samples prepared by spark plasma sintering (SPS)', Int. J. Refract. Met. Hard Mater., vol. 48, p.414–417, 2015.
DOI: 10.1016/j.ijrmhm.2014.10.016
Google Scholar
[2]
C.-T. Fu, J.-M. Wu, and A.-K. Li, 'Microstructure and mechanical properties of chromium carbide particulate reinforced alumina matrix samples', J. Mater. Sci., vol. 29, p.2671–2677, 1994.
Google Scholar
[3]
K. Niihara, T. Kusunose, S. Kohsaka, T. Sekino, and Y.-H. Choa, 'Multi-Functional Ceramic Samples trough Nanosamples Technology', vol. 163, p.527–534, 1999.
DOI: 10.4028/www.scientific.net/kem.161-163.527
Google Scholar
[4]
V. Trombini, K. P. S. Tonello, T. Santos, J. C. Bressiani, and A. H. de A. Bressiani, 'Sintering study of alumina/ niobium carbide/ tungsten carbide micro-nanosample', Eighth Int. Lat. Am. Conf. Powder Technol., vol. 7, p.787–792, 1997.
Google Scholar
[5]
Z. Pędzich, 'Tungsten Carbide as an Reinforcement in Structural Oxide-Matrix Samples', 2012.
Google Scholar
[6]
W. R. Matizamhuka, 'Spark plasma sintering (SPS) - An advanced sintering technique for structural nanosample materials', J. South. African Inst. Min. Metall., vol. 116, no. 12, p.1171–1180, 2016.
DOI: 10.17159/2411-9717/2016/v116n12a12
Google Scholar
[7]
D. S. Rao, G. Sivakumar, D. Sen, and S. V. Joshi, Detonation Sprayed Coatings and their Tribological Performances, no. January. 2015.
DOI: 10.4018/978-1-4666-7489-9.ch010
Google Scholar
[8]
S. Grasso, H. Yoshida, H. Porwal, Y. Sakka, M. Reece, Highly transparent α-alumina obtained by low cost high pressure SPS, Ceram. Int. 39 (2013) 3243–3248.
DOI: 10.1016/j.ceramint.2012.10.012
Google Scholar
[9]
E.A. Olevsky, W.L. Bradbury, C.D. Haines, D.G. Martin, D. Kapoor, Fundamental Aspects of Spark Plasma Sintering : I. Experimental, 2413 (2012) 2406–2413.
DOI: 10.1111/j.1551-2916.2012.05203.x
Google Scholar
[10]
D.M. Hulbert, D. Jiang, D. V Dudina, A.K. Mukherjee, Int . Journal of Refractory Metals & Hard Materials The synthesis and consolidation of hard materials by spark plasma sintering, Int. J. Refract. Met. Hard Mater. 27 (2009) 367–375.
DOI: 10.1016/j.ijrmhm.2008.09.011
Google Scholar
[11]
J.G. Santanach, A. Weibel, C. Estourns, Q. Yang, C. Laurent, A. Peigney, Spark plasma sintering of alumina: Study of parameters, formal sintering analysis and hypotheses on the mechanism(s) involved in densification and grain growth, Acta Mater. 59 (2011) 1400–1408.
DOI: 10.1016/j.actamat.2010.11.002
Google Scholar
[12]
M. Tokita, Spark Plasma Sintering Method, Systems, and Applications, 2nd edition, Elsevier, 2013.
Google Scholar
[13]
B.O. Guillon, J. Gonzalez-julian, B. Dargatz, M. Herrmann, T. Kessel, G. Schierning, R. Jan, Field-Assisted Sintering Technology/Spark Plasma Sintering: Mechanisms, Materials, and Technology Developments, (2014) 830–849.
DOI: 10.1002/adem.201300409
Google Scholar
[14]
W. Chen, H. Lin, P.K. Nayak, M. Chang, J. Huang, Sintering behaviour and mechanical properties of tungsten carbide–alumina samples prepared by spark plasma sintering (SPS), RMHM. 48 (2015) 414–417.
DOI: 10.1016/j.ijrmhm.2014.10.016
Google Scholar
[15]
K. Niihara, T. Kusunose, S. Kohsaka, T. Sekino, and Y.-H. Choa, 'Multi-Functional Ceramic Samples trough Nanosamples Technology', Ceram. Soc. Japan, vol. 163, p.527–534, 1999.
DOI: 10.4028/www.scientific.net/kem.161-163.527
Google Scholar
[16]
K.Z, Amos, 2019, 'Spark Plasma Sintering of Alumina Reinforced with Tungsten Carbide-Cobalt Systems', MEng dissertation, Botswana International University of Science and Technology, Palapye.
Google Scholar