A Method to Simulate Extrinsic Light Excitation of Vanadium-Compensated 6H-SiC

Article Preview

Abstract:

Extrinsic light excitation has much lower absorption coefficient compared to intrinsic light excitation, which can better utilize the “bulk” of semiconductor rather than a thin surface as the depth of light absorption is much larger, making it suitable for higher power applications. However, commercial technology computer aided design (TCAD) software has not developed a model for extrinsic light excitation. Therefore, we construct a model of Vanadium-compensated semi-insulating (VCSI) 6H-SiC photoconductive semiconductor switch (PCSS) illuminated with sub-bandgap light, and realize the process of light absorption at V deep acceptor level in Silvaco TCAD simulation by modifying the electron emission rate. Then, we simulate the transient response of 6H-SiC triggered by a nanosecond light pulse and discuss the feasibility of this method.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1093)

Pages:

87-94

Citation:

Online since:

July 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Goldberg, M. Levinshtein, S. Rumyantsev, Properties of advanced semiconductor materials: GaN, AIN, InN, BN, SiC, SiGe, SciTech Book News. 25 (2001) 93–146.

Google Scholar

[2] W. Nunnally, M. Mazzola, Opportunities for employing silicon carbide in high power photo-switches, in: Digest of Technical Papers. PPC-2003. 14th IEEE International Pulsed Power Conference (IEEE Cat. No.03CH37472), 2003: pp.823-826 Vol.2. https://doi.org/.

DOI: 10.1109/PPC.2003.1277936

Google Scholar

[3] R.M. O'Connell, C.-J. Huang, A. Karabegovic, W.C. Nunnally, Optoelectronic Microwave Power Amplifiers, IEEE Transactions on Dielectrics and Electrical Insulation. 14 (2007) 994–1001.

DOI: 10.1109/TDEI.2007.4286539

Google Scholar

[4] Q. Wu, T. Xun, Y. Zhao, H. Yang, W. Huang, The Test of a High-Power, Semi-Insulating, Linear-Mode, Vertical 6H-SiC PCSS, IEEE Transactions on Electron Devices. 66 (2019) 1837–1842.

DOI: 10.1109/TED.2019.2901065

Google Scholar

[5] J. Zhang, D. Zhang, Y. Fan, J. He, X. Ge, X. Zhang, J. Ju, T. Xun, Progress in narrowband high-power microwave sources, Physics of Plasmas. 27 (2020) 010501.

DOI: 10.1063/1.5126271

Google Scholar

[6] J.S. Sullivan, High power operation of a nitrogen doped, vanadium compensated, 6H-SiC extrinsic photoconductive switch, Appl. Phys. Lett. 104 (2014) 172106.

DOI: 10.1063/1.4875258

Google Scholar

[7] C. James, C. Hettler, J. Dickens, High voltage photoconductive switches using semi-insulating, vanadium doped 6H-SiC, in: 2009 IEEE Pulsed Power Conference, 2009: p.283–286.

DOI: 10.1109/PPC.2009.5386303

Google Scholar

[8] K.Y. Lai, Y.L. Qi, H.J. Lv, B. Qi, Y.H. Zhao, A new rear-illuminated vanadium-compensated 4H-SiC photoconductive switches with AlN anti-reflection coating, J. Phys.: Conf. Ser. 1520 (2020) 012010.

DOI: 10.1088/1742-6596/1520/1/012010

Google Scholar

[9] K. Murata, T. Tawara, A. Yang, R. Takanashi, T. Miyazawa, H. Tsuchida, Wide-ranging control of carrier lifetimes in n-type 4H-SiC epilayer by intentional vanadium doping, Journal of Applied Physics. 126 (2019) 045711.

DOI: 10.1063/1.5098101

Google Scholar

[10] T. Miyazawa, T. Tawara, R. Takanashi, H. Tsuchida, Vanadium doping in 4H-SiC epitaxial growth for carrier lifetime control, Appl. Phys. Express. 9 (2016) 111301.

DOI: 10.7567/APEX.9.111301

Google Scholar

[11] N.J. Kramer, L.F. Voss, A.M. Conway, P.V. Grivickas, M. Bora, D.L. Hall, A.N. Caruso, Extrinsic Absorption Pathways in Vanadium-Doped SiC Measured Using a Total Internal Reflection Geometry, Physica Status Solidi (a). 217 (2020) 2000315.

DOI: 10.1002/pssa.202000315

Google Scholar

[12] Y. Fang, Y. Nie, X. Wu, J. Yang, Y. Chen, Y. Wang, Q. Wu, Y. Song, Excitation wavelength-dependent carrier dynamics in n-type and semi-insulating 6H-SiC using ultrafast transient absorption spectroscopy, Journal of Applied Physics. 125 (2019) 235703.

DOI: 10.1063/1.5096293

Google Scholar

[13] M. Suproniuk, P. Kamiński, R. Kozłowski, M. Pawłowski, M. Wierzbowski, Current status of modelling the semi-insulating 4H–SiC transient photoconductivity for application to photoconductive switches, Opto-Electronics Review. 25 (2017) 171–180. https://doi.org/ 10.1016/j.opelre. 2017.03.006.

DOI: 10.1016/j.opelre.2017.03.006

Google Scholar

[14] S. Rakheja, L. Huang, S. Hau-Riege, S. Harrison, L. Voss, A. Conway, Performance Modeling of Silicon Carbide Photoconductive Switches for High-Power and High-Frequency Applications, IEEE Journal of the Electron Devices Society. PP (2020) 1–1. https://doi.org/10.1109/JEDS. 2020.3022031.

DOI: 10.1109/jeds.2020.3022031

Google Scholar

[15] Y. Zhao, Q. Wu, T. Xun, L. Wang, H. Yang, A Scalable, General Purpose Circuit Model for Vanadium Compensated, Semi-Insulating, Vertical 6H-SiC PCSS, IEEE Transactions on Circuits and Systems II: Express Briefs. PP (2020) 1–1.

DOI: 10.1109/TCSII.2020.3021831

Google Scholar

[16] X. Chu, T. Xun, L. Wang, H. Yang, J. Liu, J. He, J. Zhang, Wide-range Frequency-Agile Microwave Generation up to 10 GHz based on Vanadium-compensated 4H-SiC Photoconductive Semiconductor Switch, IEEE Electron Device Letters. (2022) 1–1.

DOI: 10.1109/LED.2022.3179292

Google Scholar

[17] X. Chu, T. Xun, L. Wang, L. Xu, H. Yang, J. Liu, 4H-SiC photoconductive semiconductor based ultra-wideband microwave generation with MHz tunable repetition rate, Electronics Letters. n/a (n.d.).

DOI: 10.1049/ell2.12553

Google Scholar

[18] K.S. Kelkar, N.E. Islam, P. Kirawanich, C.M. Fessler, W.C. Nunnally, ON-State Characteristics of a High-Power Photoconductive Switch Fabricated From Compensated 6-H Silicon Carbide, IEEE Transactions on Plasma Science. 36 (2008) 287–292.

DOI: 10.1109/TPS.2007.914191

Google Scholar

[19] Z. Hemmat, R. Faez, S. Amiri, Simulation and investigation of a back-triggered 6H-SiC high power photoconductive switch, in: The 6th Power Electronics, Drive Systems Technologies Conference (PEDSTC2015), 2015: p.253–256. https://doi.org/10.1109/PEDSTC. 2015.7093283.

DOI: 10.1109/pedstc.2015.7093283

Google Scholar

[20] ATLAS User's Manual, Device Simulation Software, SILVACO International, March, 2012.

Google Scholar

[21] J.S. Sullivan, Wide Bandgap Extrinsic Photoconductive Switches, Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States), 2013.

DOI: 10.2172/1088462

Google Scholar

[22] M. Lades, Modeling and Simulation of Wide Bandgap Semiconductor Devices: 4H/6H-SiC, Undefined. (2000). https://www.semanticscholar.org/paper/Modeling-and-Simulation-of-Wide-Bandgap-Devices%3A-Lades/0a8f13e964bded44d8e4d53611ea691160bdb446 (accessed April 4, 2022).

DOI: 10.1109/sispad.1997.621364

Google Scholar

[23] W.C. Mitchel, W.D. Mitchell, G. Landis, H.E. Smith, W. Lee, M.E. Zvanut, Vanadium donor and acceptor levels in semi-insulating 4H- and 6H-SiC, Journal of Applied Physics. 101 (2007) 013707.

DOI: 10.1063/1.2407263

Google Scholar

[24] S.E. Sampayan, P.V. Grivickas, A.M. Conway, K.C. Sampayan, I. Booker, M. Bora, G.J. Caporaso, V. Grivickas, H.T. Nguyen, K. Redeckas, A. Schoner, L.F. Voss, M. Vengris, L. Wang, Characterization of carrier behavior in photonically excited 6H silicon carbide exhibiting fast, high voltage, bulk transconductance properties, Sci Rep. 11 (2021) 6859.

DOI: 10.1038/s41598-021-85275-6

Google Scholar