Probing the Magnetic Properties of Boron-Doped Graphenic-Based Carbon Materials

Article Preview

Abstract:

Graphenic carbon (GC) has been successfully synthesized from biomass (coconut shell charcoal) using the liquid phase exfoliation method. The dopants, in the form of light atoms such as boron (B-GC), were introduced with the aim of improving their magnetic properties. X-ray diffraction was used to identify the GC and B-GC, and the results show broad peaks around 24° and 43°, indicating the presence of graphene-like carbon structure. The bonding structure was also analyzed using X-ray photoelectron (XPS). It reveals the main bonds in GC consist of sp2, sp3, and C=O. While the B-GC sample shows an additional bond, namely the B-C bond, as an indicator of the successful doping process of B into the GC structure. Both GC and B-GC show weak room temperature ferromagnetism. Furthermore, these findings show that introducing boron atoms into the graphenic structure can improve magnetization.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1094)

Pages:

129-134

Citation:

Online since:

July 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Terrones, A. R. Botello-Méndez, J. Campos-Delgado, F. López-Urías, Y. I. Vega-Cantú, F. J. Rodríguez-Macías, A. L. Elías, E. Muñoz-Sandoval, A. G. Cano-Márquez, and J.-C. Charlier, Nano Today 5, 351 (2010).

DOI: 10.1016/j.nantod.2010.06.010

Google Scholar

[2] S. Iqbal, H. Khatoon, A. H. Pandit, and S. Ahmad, Mater. Sci. Energy Technol. 2, 417 (2019).

Google Scholar

[3] Z. Li, L. Wang, Y. Li, Y. Feng, and W. Feng, Compos. Sci. Technol. 179, 10 (2019).

Google Scholar

[4] S. Sehar, F. Sher, S. Zhang, U. Khalid, J. Sulejmanović, and E. C. Lima, J. Mol. Liq. 313, 113494 (2020).

Google Scholar

[5] P. Esquinazi, A. Setzer, R. Höhne, C. Semmelhack, Y. Kopelevich, D. Spemann, T. Butz, B. Kohlstrunk, and M. Lösche, Phys. Rev. B 66, 024429 (2002).

DOI: 10.1103/physrevb.66.024429

Google Scholar

[6] S. K. Sarkar, K. K. Raul, S. S. Pradhan, S. Basu, and A. Nayak, Phys. E Low-Dimens. Syst. Nanostructures 64, 78 (2014).

Google Scholar

[7] S. Qin, X. Guo, Y. Cao, Z. Ni, and Q. Xu, Carbon 78, 559 (2014).

Google Scholar

[8] G. Khurana, N. Kumar, R. K. Kotnala, T. Nautiyal, and R. S. Katiyar, Nanoscale 5, 3346 (2013).

Google Scholar

[9] J. Tuček, P. Błoński, J. Ugolotti, A. K. Swain, T. Enoki, and R. Zbořil, Chem. Soc. Rev. 47, 3899 (2018).

DOI: 10.1039/c7cs00288b

Google Scholar

[10] M. Coros, F. Pogacean, A. Turza, M. Dan, C. Berghian-Grosan, I.-O. Pana, and S. Pruneanu, Phys. E Low-Dimens. Syst. Nanostructures 119, 113971 (2020).

DOI: 10.1016/j.physe.2020.113971

Google Scholar

[11] D. Ristiani, R. Asih, F. Astuti, M. A. Baqiya, C. Kaewhan, S. Tunmee, H. Nakajima, S. Soontaranon, and Darminto, Heliyon 8, e09032 (2022).

DOI: 10.1016/j.heliyon.2022.e09032

Google Scholar

[12] A.F. Kurniawan, M.S. Anwar, K. Nadiyyah, Y. Taryana, M.M. Ramli, M. Mashuri, T. Triwikantoro and D. Darminto, Trends Sci. 19, 1714 (2022).

DOI: 10.48048/tis.2022.1714

Google Scholar

[13] K. Bagani, M. K. Ray, B. Satpati, N. R. Ray, M. Sardar, and S. Banerjee, J. Phys. Chem. C 118, 13254 (2014).

DOI: 10.1021/jp503034d

Google Scholar

[14] P. Sun, K. Wang, J. Wei, M. Zhong, D. Wu, and H. Zhu, Nano Res. 7, 1507 (2014).

Google Scholar

[15] L. Kou, C. Tang, W. Guo, and C. Chen, ACS Nano 5, 1012 (2011).

Google Scholar

[16] J. J. Palacios, J. Fernández-Rossier, and L. Brey, Phys. Rev. B 77, 195428 (2008).

Google Scholar

[17] K. Xie, Q. Jia, X. Zhang, L. Fu, and G. Zhao, Nanomaterials 8, 552 (2018).

Google Scholar

[18] Y. Liu, Q. Feng, N. Tang, X. Wan, F. Liu, L. Lv, and Y. Du, Carbon 60, 549 (2013).

Google Scholar

[19] T. L. Makarova, A. L. Shelankov, A. A. Zyrianova, A. I. Veinger, T. V. Tisnek, E. Lähderanta, A. I. Shames, A. V. Okotrub, L. G. Bulusheva, G. N. Chekhova, D. V. Pinakov, I. P. Asanov, and Ž. Šljivančanin, Sci. Rep. 5, 13382 (2015).

DOI: 10.1038/srep13382

Google Scholar

[20] B. Priyanto, R. Asih, I. S. Ardiani, A. Z. Laila, K. Nadiyyah, B. Romadhon, S. Tunmee, H. Nakajima, and Y. Cahyono, J. Renew. Mater. 9, 1087 (2021).

DOI: 10.32604/jrm.2021.014466

Google Scholar

[21] A. Z. Laila, K. Nadiyyah, I. S. Ardiani, and B. Priyanto, in Key Engineering Materials, Vol. 860 (Trans Tech Publ, 2020), p.185–189.

DOI: 10.4028/www.scientific.net/kem.860.185

Google Scholar

[22] I.V. Ershov, A.A. Lavrentyev, N.V. Prutsakova, O.M. Holodova, I.V. Mardasova, T.P. Zhdanova, and A.T. Kozakov, Appl. Sci. 11, 11972 (2021).

DOI: 10.3390/app112411972

Google Scholar

[23] M. Pawlyta, J.-N. Rouzaud, and S. Duber, Carbon 84, 479 (2015).

Google Scholar

[24] N. E. S. Sazali, M. Deraman, R. Omar, M. A. R. Othman, M. Suleman, S. A. Shamsudin, N. S. M. Tajuddin, M. Hanappi, E. Hamdan, and N. S. M. Nor, in AIP Conference Proceedings, Vol. 1784 (AIP Publishing LLC, 2016), p.040009.

DOI: 10.1063/1.4966795

Google Scholar

[25] S. Navalón, J. R. Herance, M. Álvaro, and H. García, Mater. Horiz. 5, 363 (2018).

Google Scholar

[26] B. Gupta, N. Kumar, K. Panda, V. Kanan, S. Joshi, and I. Visoly-Fisher, Sci. Rep. 7, 45030 (2017).

Google Scholar

[27] M. K. Rabchinskii, A. T. Dideikin, D. A. Kirilenko, M. V. Baidakova, V. V. Shnitov, F. Roth, S. V. Konyakhin, N. A. Besedina, S. I. Pavlov, R. A. Kuricyn, N. M. Lebedeva, P. N. Brunkov, and A. Ya. Vul', Sci. Rep. 8, 14154 (2018).

DOI: 10.1038/s41598-018-32488-x

Google Scholar

[28] D. D. Le Pevelen, in Encyclopedia of Spectroscopy and Spectrometry (Elsevier, 2010), p.2559–2576.

Google Scholar

[29] M.A. Mannan, Y. Hirano, A. T. Quitain, M. Koinuma, and T. Kida, J Mater Sci Eng 7, 1 (2018).

Google Scholar

[30] A.P. Savintsev, Y.O. Gavasheli, Z. K. Kalazhokov, and K. K. Kalazhokov, J. Phys. Conf. Ser. 774, 012118 (2016).

DOI: 10.1088/1742-6596/774/1/012118

Google Scholar

[31] I.S. Ardiani, K. Nadiyyah, A.Z. Laila, S. Tunmee, H. Nakajima, and B. Priyanto, in Key Engineering Materials, Vol. 860 (Trans Tech Publ, 2020), p.190–195.

DOI: 10.4028/www.scientific.net/kem.860.190

Google Scholar

[32] A. Bhaumik, A. Haque, M. Taufique, P. Karnati, R. Patel, M. Nath, and K. Ghosh, J. Mater. Sci. Eng. 06, (2017).

Google Scholar