Carbon Dots Modification Surface of Titanium Dioxide and Their Photocatalytic Activity

Article Preview

Abstract:

This work, we develop the efficient visible-light-responsive titanium dioxide photocatalyst using carbon dots as a sensitizer (C-dots/TiO2). C-dots was synthesized via a simple one-pot reaction by microwave-assisted pyrolysis method using orange juice as carbon precursors. C-dots/TiO2 samples were prepared by a facile route. Moreover, the micro-structure and optical properties of as-prepared C-dots/TiO2 have been evaluated using X-ray powder diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and ultraviolet–visible diffuse reflection spectroscopy (DRS). The modification surface of TiO2 with carbon dots enhanced the light absorption in visible region. The photocatalytic properties of as-prepared pure TiO2 and C-dots/TiO2 were also explored indigo carmine decolorization under visible light. The photocatalytic results revealed that the C-dots/TiO2 exhibited higher catalytic performance than the pure TiO2 under visible light.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1098)

Pages:

165-171

Citation:

Online since:

September 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Fujishima and K. Honda, Nature Vol. 238 (1972), p.37.

Google Scholar

[2] J. M. Herrmann, Topics in Catalysis, Vol. 34 (2005), p.49.

Google Scholar

[3] X. Zhang, H. Huang, J. Liu, Y. Liu and Z. Kang, J. Mater. Chem. A Vol.1 (2013), p.11529.

Google Scholar

[4] D. Chen, Y. Li, J. Zhang, J.Z. Zhou, Y. Guo, H. Liu, Chem. Eng. J., Vol. 185– 186 (2012), p.120.

Google Scholar

[5] N. Hashim, S. Thakur, M.Patang, F. Crapulli, A.K. Ray, Environ. Technol. Vol. 38, (2017), p.933.

Google Scholar

[6] Liu, J. Wang, W. Chen, C. Dong, C. Li, Chem. Eng. J. Vol. 280 (2015), p.588.

Google Scholar

[7] Y. Kurokawa, D.Trang Nguyen, K. Taguchi, Inter. J. Mater. Sci. Eng. Vol. 7 (2019), p.10.

Google Scholar

[8] Sakthivel, S.; Shankar, M. V.; Palanichamy, M.; Arabindoo, B.; Bahnemann, D. W.; Murugesan, V.; Water Res. Vol. 38 (2004), p.3001.

DOI: 10.1016/j.watres.2004.04.046

Google Scholar

[9] H.Y. Chuang, D.H. Chen, Nanotech.Vol. 20 (2009), p.1.

Google Scholar

[10] L. Huang, F. Peng, H. Wang, H. Yu, Z. Li. Catal. Commun. Vol. 10 (2009), p.1839.

Google Scholar

[11] L. Tan, X. Zhang, Q. Liu , X. Jing, J. Liu, D. Song, S. Hu, L. Liu, J. Wang, Colloids Surf. A: Physicochem. Eng. Asp. Vol. 469 (2015), p.279.

Google Scholar

[12] H. Tian, K. Shen, X. Hu, L. Qiao, and W. Zheng, J. Alloys Compd. Vol. 691 (2017), p.369.

Google Scholar

[13] R. Long, D. Casanova, W-H Fang, and O.V. Prezhdo, J. Am. Chem. Soc. Vol. 139 (2017), p.2619.

Google Scholar

[14] J. Suave, S.M. Amorim, J. Ângelo, L. Andrade, A. Mendes, and R.F.P. M. Moreira, J. Photochem. Photobiol. Chem. Vol. 348 (2017), p.326.

Google Scholar

[15] S. Rani, M. Kumar, S. Sharma, D. Kumar, Inter. J. Mater. Sci. Eng. Vol. 3 (2015), p.267.

Google Scholar

[16] X. Zhang, F. Wang, H. Huang, Nanoscale. Vol. 5 (2013), p.2274.

Google Scholar

[17] X. Yu, R. Liu, G. Zhang, Nanotechnology. Vol. 24 (2013), p.335401.

Google Scholar

[18] Zhang, F. Xie, P. Lin, and W.C.H. Choy, ACS Nano. Vol. 7 (2013), p.1740.

Google Scholar

[19] Suwanchawalit, S. Wongnawa, P. Sriprang and P. Meanha, Ceram. Inter. Vol. 38 (2012), p.5201.

DOI: 10.1016/j.ceramint.2012.03.027

Google Scholar

[20] M. Aiempanakit, J. Sangkaworn, N. Worawannotai, K. Laohhasurayotin, W. Sangchay, S. Lakseee, and C. Suwanchawalit, J. Met. Mater. Miner. Vol. 32(2) (2022), p.76.

DOI: 10.21577/0103-5053.20220006

Google Scholar

[21] C. Suwanchawalit1, K. Roongraung, S. Buddee, S. Wongnawa and A. Patil, Key Engineering Materials. Vol. 757 (2017), p.88.

DOI: 10.4028/www.scientific.net/kem.757.88

Google Scholar

[22] Y. Hu, X. Xie, X. Wang, Y.Wang, Y. Zeng, D.Y.H. Pui, J. Sun, Appl. Surf. Sci. Vol. 440 (2018), p.226.

Google Scholar

[23] Barati, M. Shamsipur, E. Arkan, L. Hosseinzadeh, H. Abdollahi, H. Mater. Sci. Eng. C. Vol. 47 (2015), p.325.

Google Scholar

[24] H. Irie, Y. Watanabe, K. Hashimoto, Chem. Lett. Vol. 32 (2003), p.772.

Google Scholar

[25] J. Ke, X.Y. Li, Q.D. Zhao, B.J. Liu, S.M. Liu, S.B. Wang J. Colloid Interf Sci. Vol. 496 (2017), p.425.

Google Scholar

[26] Chen, D. Yang, J. Geng, J. Zhu, Z. Jiang, App. Surf. Sci. Vol. 255 (2008), p.2879.

Google Scholar

[27] M. Aiempanakit, J. Sangkaworn, N. Worawannotai, K. Laohhasurayotin, W. Sangchay, S. Laksee, C. Suwanchawalit. J. Braz. Chem. Soc. Vol. 33 (2022), p.541.

DOI: 10.21577/0103-5053.20220006

Google Scholar