[1]
B. K. Ramaraj and K. Ravikumar, Preparation and characterisation of binary eutectic phase change material/activated porous bio char/multi walled carbon nano tubes as composite phase change material. Fullerenes, Fuller. Nanotub. Carbon. Nanostructures (2022) 1-15.
DOI: 10.1080/1536383x.2022.2123800
Google Scholar
[2]
Y. B. Tao, C. H. Lin, Y. L. He, Preparation and thermal properties characterization of carbonate salt/carbon nanomaterial composite phase change material. Energy Convers. Manag. 97 (2015) 103-110.
DOI: 10.1016/j.enconman.2015.03.051
Google Scholar
[3]
T. R. Whiffen and S.B. Riffat, A review of PCM technology for thermal energy storage in the built environment, Int. J. Low Carbon Technol. 8 (2013) 147-158.
DOI: 10.1093/ijlct/cts021
Google Scholar
[4]
Kumar, K. R. Balasubramanian, G. P. Kumar, C. Bharat Kumar, M. M. Cheepu, Experimental Investigation of Nano-encapsulated Molten Salt for Medium-Temperature Thermal Storage Systems and Modeling of Neural Networks. Int. J. Thermophys., 43(9) (2022)1-30.
DOI: 10.1007/s10765-022-03069-y
Google Scholar
[5]
S. Jegadheeswaran, Sanjay D. Pohekar, Performance enhancement in latent heat thermal storage system, Renew. Sustain. Energy Rev. 13 (2009) 2225-2244.
DOI: 10.1016/j.rser.2009.06.024
Google Scholar
[6]
H. Tian, W. Wang, J. Ding, Preparation of binary eutectic chloride/expanded graphite as high-temperature thermal energy storage materials, Sol. Energy Mater. Sol. Cells 149 (2016) 187-194.
DOI: 10.1016/j.solmat.2015.12.038
Google Scholar
[7]
Y. Deng, J. Li, T. Qian, Preparation and Characterization of KNO3/Diatomite Shape-Stabilized Composite Phase Change Material for High-Temperature Thermal Energy Storage, J Mater Sci Technol. 33 (2015) 198-203.
DOI: 10.1016/j.jmst.2016.02.011
Google Scholar
[8]
K. R. Balasubramanian, K. Ravikumar, S. Prabhakaran, B. S. Jinshah, N. Abhishek, Thermal degradation studies and hybrid neural network modelling of eutectic phase change material composites. Int. J. Energy Res. 46(11) (2022)15733-15755.
DOI: 10.1002/er.8272
Google Scholar
[9]
R. K. Kottala, B. K. Ramaraj, M. G. Vempally, M. Lakshmanan, Experimental investigation and neural network modeling of binary eutectic/expanded graphite composites for medium temperature thermal energy storage. Energy Sources A: Recovery Util., (2022)1-24.
DOI: 10.1080/15567036.2022.2043490
Google Scholar
[10]
K. Pielichowska, K. Pielichowski, Phase change materials for thermal energy storage, Prog. Mater. Sci. 65 (2014) 67-123.
DOI: 10.1016/j.pmatsci.2014.03.005
Google Scholar
[11]
D. Das, U. Bordoloi, H. H. Muigai, P. Kalita, A novel form stable PCM based bio composite material for solar thermal energy storage applications, J Energy Storage 30 (2020) 101403.
DOI: 10.1016/j.est.2020.101403
Google Scholar
[12]
Z. Liua, Y. Zhanga, K. Hua, Preparation and properties of polyethylene glycol-based semi-interpenetrating polymer network as novel form-stable phase change materials for thermal energy storage, Energy Build. 127 (2016) 327-336.
DOI: 10.1016/j.enbuild.2016.06.009
Google Scholar
[13]
A. J. Chamkha, A. Doostanidezfuli, Phase-change heat transfer of single/hybrid nanoparticles-enhanced phase-change materials over a heated horizontal cylinder confined in a square cavity, Adv. Powder Technol. 28 (2017) 385-397.
DOI: 10.1016/j.apt.2016.10.009
Google Scholar
[14]
D. Kim, J. Jung, Y. Kim (2016): Structure and thermal properties of octadecane/expanded graphite composites as shape-stabilized phase change materials, Int. J. Heat Mass Transf. 95 (2016) 735-741.
DOI: 10.1016/j.ijheatmasstransfer.2015.12.049
Google Scholar
[15]
Y. Ren, C. Xu, M. Yuan (2018) Ca-(NO3)2-NaNO3/expanded graphite composite as a novel shape-stable phase change material for mid-to high-temperature thermal energy storage, Energy Convers. Manag. 163 (2018) 50-58.
DOI: 10.1016/j.enconman.2018.02.057
Google Scholar
[16]
D. Su, Y. Jia, Y. Lin, G. Fang, Maximizing the energy output of a photovoltaic–thermal solar collector incorporating phase change materials, Energy Build. 153 (2017) 382-391.
DOI: 10.1016/j.enbuild.2017.08.027
Google Scholar
[17]
Y. Zhao, X. Zhang, X. Xu, S, Zhang, Development of composite phase change cold storage material and its application in vaccine cold storage equipment, J Energy Storage. 30 (2020) 101455.
DOI: 10.1016/j.est.2020.101455
Google Scholar
[18]
C. Barreneche, A. Gil, F. Sheth, AI. Fernándz, F.Cabez, Effect of d-mannitol polymorphism in its thermal energy storage capacity when it is used as PCM, J. Sol. Energy 94 (2013) 344-351.
DOI: 10.1016/j.solener.2013.05.023
Google Scholar
[19]
Y. Qin, G. Leng, X. Yu, H. Cao, G. Qiao, Y. Dai, Y. Zhang, Sodium sulfate–diatomite composite materials for high-temperature thermal energy storage, Powder Technol., 282 (2015) 37-42.
DOI: 10.1016/j.powtec.2014.08.075
Google Scholar
[20]
S. K. Sahu, S. K. Natarajan, A. Singh and S. K. Suraparaju, Experimental investigation of a solar still combined with phase change material (RT58) in southern India climatic conditions, J. Mech. Eng. Sci. (2022) 1-12.
DOI: 10.1177/09544062221139986
Google Scholar
[21]
A. Sampathkumar, S. K. Suraparaju, S. K. Natarajan, Enhancement of Yield in Single Slope Solar Still by Composite Heat Storage Material-Experimental and Thermo-Economic Assessment, J. Sol. Energy Eng. 145 (2023) 021005.
DOI: 10.1115/1.4055100
Google Scholar