Synthesis and Characterization of Shape-Stable Bio-Char Composite PCM Material for Solar Desalination Application

Article Preview

Abstract:

In the present study, three different D-Mannitol based activated bio-char composite shape-stable phase change materials (PCM) were developed for medium temperature energy storage applications like solar desalination, solar thermal storage and waste heat recovery with varying bio-char compositions. The activated bio-char (A-BC) composite-based samples were prepared from sawdust by using the pyrolysis method. The phase composition, morphology, latent heat capacity and phase change temperature of the fabricated samples were assessed by XRD, SEM, differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR). The fabricated bio-char composite materials exhibited good thermal properties and structural stability compared to pure PCM. The phase change material with a blend of minimum 15 wt.% activated bio-char and 85% D-Mannitol was observed to be leak resistant. FTIR and XRD results confirm that the chemical properties of the bio-char composite remain the same as the pure PCM, which confirms that there are no chemical interactions between the PCM and bio-char. PCM sample with 15% activated bio-char exhibited an enhanced thermal stability compared to the pure PCM.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1099)

Pages:

27-36

Citation:

Online since:

October 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. K. Ramaraj and K. Ravikumar, Preparation and characterisation of binary eutectic phase change material/activated porous bio char/multi walled carbon nano tubes as composite phase change material. Fullerenes, Fuller. Nanotub. Carbon. Nanostructures (2022) 1-15.

DOI: 10.1080/1536383x.2022.2123800

Google Scholar

[2] Y. B. Tao, C. H. Lin, Y. L. He, Preparation and thermal properties characterization of carbonate salt/carbon nanomaterial composite phase change material. Energy Convers. Manag. 97 (2015) 103-110.

DOI: 10.1016/j.enconman.2015.03.051

Google Scholar

[3] T. R. Whiffen and S.B. Riffat, A review of PCM technology for thermal energy storage in the built environment, Int. J. Low Carbon Technol. 8 (2013) 147-158.

DOI: 10.1093/ijlct/cts021

Google Scholar

[4] Kumar, K. R. Balasubramanian, G. P. Kumar, C. Bharat Kumar, M. M. Cheepu, Experimental Investigation of Nano-encapsulated Molten Salt for Medium-Temperature Thermal Storage Systems and Modeling of Neural Networks. Int. J. Thermophys., 43(9) (2022)1-30.

DOI: 10.1007/s10765-022-03069-y

Google Scholar

[5] S. Jegadheeswaran, Sanjay D. Pohekar, Performance enhancement in latent heat thermal storage system, Renew. Sustain. Energy Rev. 13 (2009) 2225-2244.

DOI: 10.1016/j.rser.2009.06.024

Google Scholar

[6] H. Tian, W. Wang, J. Ding, Preparation of binary eutectic chloride/expanded graphite as high-temperature thermal energy storage materials, Sol. Energy Mater. Sol. Cells 149 (2016) 187-194.

DOI: 10.1016/j.solmat.2015.12.038

Google Scholar

[7] Y. Deng, J. Li, T. Qian, Preparation and Characterization of KNO3/Diatomite Shape-Stabilized Composite Phase Change Material for High-Temperature Thermal Energy Storage, J Mater Sci Technol. 33 (2015) 198-203.

DOI: 10.1016/j.jmst.2016.02.011

Google Scholar

[8] K. R. Balasubramanian, K. Ravikumar, S. Prabhakaran, B. S. Jinshah, N. Abhishek, Thermal degradation studies and hybrid neural network modelling of eutectic phase change material composites. Int. J. Energy Res. 46(11) (2022)15733-15755.

DOI: 10.1002/er.8272

Google Scholar

[9] R. K. Kottala, B. K. Ramaraj, M. G. Vempally, M. Lakshmanan, Experimental investigation and neural network modeling of binary eutectic/expanded graphite composites for medium temperature thermal energy storage. Energy Sources A: Recovery Util., (2022)1-24.

DOI: 10.1080/15567036.2022.2043490

Google Scholar

[10] K. Pielichowska, K. Pielichowski, Phase change materials for thermal energy storage, Prog. Mater. Sci. 65 (2014) 67-123.

DOI: 10.1016/j.pmatsci.2014.03.005

Google Scholar

[11] D. Das, U. Bordoloi, H. H. Muigai, P. Kalita, A novel form stable PCM based bio composite material for solar thermal energy storage applications, J Energy Storage 30 (2020) 101403.

DOI: 10.1016/j.est.2020.101403

Google Scholar

[12] Z. Liua, Y. Zhanga, K. Hua, Preparation and properties of polyethylene glycol-based semi-interpenetrating polymer network as novel form-stable phase change materials for thermal energy storage, Energy Build. 127 (2016) 327-336.

DOI: 10.1016/j.enbuild.2016.06.009

Google Scholar

[13] A. J. Chamkha, A. Doostanidezfuli, Phase-change heat transfer of single/hybrid nanoparticles-enhanced phase-change materials over a heated horizontal cylinder confined in a square cavity, Adv. Powder Technol. 28 (2017) 385-397.

DOI: 10.1016/j.apt.2016.10.009

Google Scholar

[14] D. Kim, J. Jung, Y. Kim (2016): Structure and thermal properties of octadecane/expanded graphite composites as shape-stabilized phase change materials, Int. J. Heat Mass Transf. 95 (2016) 735-741.

DOI: 10.1016/j.ijheatmasstransfer.2015.12.049

Google Scholar

[15] Y. Ren, C. Xu, M. Yuan (2018) Ca-(NO3)2-NaNO3/expanded graphite composite as a novel shape-stable phase change material for mid-to high-temperature thermal energy storage, Energy Convers. Manag. 163 (2018) 50-58.

DOI: 10.1016/j.enconman.2018.02.057

Google Scholar

[16] D. Su, Y. Jia, Y. Lin, G. Fang, Maximizing the energy output of a photovoltaic–thermal solar collector incorporating phase change materials, Energy Build. 153 (2017) 382-391.

DOI: 10.1016/j.enbuild.2017.08.027

Google Scholar

[17] Y. Zhao, X. Zhang, X. Xu, S, Zhang, Development of composite phase change cold storage material and its application in vaccine cold storage equipment, J Energy Storage. 30 (2020) 101455.

DOI: 10.1016/j.est.2020.101455

Google Scholar

[18] C. Barreneche, A. Gil, F. Sheth, AI. Fernándz, F.Cabez, Effect of d-mannitol polymorphism in its thermal energy storage capacity when it is used as PCM, J. Sol. Energy 94 (2013) 344-351.

DOI: 10.1016/j.solener.2013.05.023

Google Scholar

[19] Y. Qin, G. Leng, X. Yu, H. Cao, G. Qiao, Y. Dai, Y. Zhang, Sodium sulfate–diatomite composite materials for high-temperature thermal energy storage, Powder Technol., 282 (2015) 37-42.

DOI: 10.1016/j.powtec.2014.08.075

Google Scholar

[20] S. K. Sahu, S. K. Natarajan, A. Singh and S. K. Suraparaju, Experimental investigation of a solar still combined with phase change material (RT58) in southern India climatic conditions, J. Mech. Eng. Sci. (2022) 1-12.

DOI: 10.1177/09544062221139986

Google Scholar

[21] A. Sampathkumar, S. K. Suraparaju, S. K. Natarajan, Enhancement of Yield in Single Slope Solar Still by Composite Heat Storage Material-Experimental and Thermo-Economic Assessment, J. Sol. Energy Eng. 145 (2023) 021005.

DOI: 10.1115/1.4055100

Google Scholar