[1]
K.Vanitha, K.A Vijayalakshmi, M. Revansidddappa, S.B. Chalvaraju, K.Sadasivam and M. Thirumoorthy "Electrical Conductivity of DC, AC of Polyaniline/NLS FA/Silver Nano Particle with Low Temperature Plasma" Journal of Xidian University, 17(3),446-461, (2023).
Google Scholar
[2]
Kadar, C. H. Abdul, Faisal, Muhammad, Maruthi, N, Raghavendra, Narasimha, Prasanna, B. P, Nandan, K. R, Manohara, S. R, Revanasiddappa M, and Madhusudhan, C. K. "Anticorrosive Polypyrrole/Barium Ferrite (PPy/BaFe12O19) Composites with Tunable Electrical Response for Electromagnetic Wave Absorption and Shielding Performance" Journal of Electronic Materials vol. 52, no. 3, p.2080–2093, (2023).
DOI: 10.1007/s11664-022-10179-8
Google Scholar
[3]
B.M. Basavaraja Patel, M. Revanasiddappa, S. Yallappa1, and D. R. Rangaswamy, "Iron nanoparticles embedded in polypyrrole and tellurium oxide ternary nanocomposites for electrical conductivity and electromagnetic interference shielding" J Mater Sci: Mater Electron, 34, 1-16, (2023).
DOI: 10.1007/s10854-023-10298-w
Google Scholar
[4]
Reka. U, Sonima Mohan, M. Revanasiddappa, Mini Vellakkat, "Conducting polymer/transition metal carbide nanocomposite treated graphite felt as positive electrode in all-vanadium redox flow battery" Synthetic Metals, Volume 294,(2023).
DOI: 10.1016/j.synthmet.2023.117311
Google Scholar
[5]
Basavaraja Patel B M, Revanasiddappa M, Rangaswamy D R, Manjunatha S and Ravikiran Y T, "Synthesis characterization DC conductivity and EMI shielding studies of Iron-decorated Polypyrrole-fly ash nanocomposites" Materials Today proceedings Volume 49, Part 5, P 2253-2259, (2022).
DOI: 10.1016/j.matpr.2021.09.337
Google Scholar
[6]
B M Basavaraja Patel, M Revanasiddappa, D R Rangaswamy , S Manjunatha, Y T Ravikiran "DC conductivity studies of iron decorated polypyrrole" J. Phys.: Conf. Ser. 2070, 012070, (2021).
DOI: 10.1088/1742-6596/2070/1/012070
Google Scholar
[7]
N. Maruthi, Muhammad Faisal, Narasimha Raghavendra, B.P. Prasanna, S. R. Manohara, and M. Revanasiddappa "Promising EMI shielding effectiveness and anticorrosive properties of PANI-Nb2O5 nanocomposites: Multifunctional approach" Synthetic Metals Volume 275, (2021).
DOI: 10.1016/j.synthmet.2021.116744
Google Scholar
[8]
N. Maruthi, Muhammad Faisal, Narasimha Raghavendra, B.P. Prasanna, S. R. Manohara, M. Revanasiddappa, "Anticorrosive polyaniline-coated copper oxide (PANI/CuO) nanocomposites with tunable electrical properties for broadband electromagnetic interference shielding" Colloids and Surfaces A: Physicochemical and Engineering Aspects, 621, (2021).
DOI: 10.1016/j.colsurfa.2021.126611
Google Scholar
[9]
A. Sunilkumar, S. Manjunatha, Y. T. Ravikiran, M. Revanasiddappa, M. Prashantkumar and T. Machappa "AC conductivity and dielectric studies in polypyrrole wrapped tungsten disulphide composites" Polym. Bull. (2021).
DOI: 10.1007/s00289-021-03552-w
Google Scholar
[10]
C.C. Inagaki, M.M. Oliveira, A.J.G. Zarbin, Direct and one-step synthesis of polythiophene/gold nanoparticles films through liquid/liquid interfacial polymerization. Colloid Interface Sci.516,498-510, (2018).
DOI: 10.1016/j.jcis.2018.01.076
Google Scholar
[11]
A.T. Mthew, K.B. Akshaya, T.P. Vinod, A. Varghese, L. George, TEMPO-mediated aqueous phase electrooxidation of pyridyl methanol at palladium-decorated PANI on carbon fibre paper electrode. Chem.Select,5,3283-3294, (2020).
DOI: 10.1002/slct.201904432
Google Scholar
[12]
N. Bouzayen, H. Sadki, M. Mbarek et al., "Synthesis, characterization, DFT and TD-DFT studies of novel carbazolebased copolymer used in high efficient dye-sensitized solar cells," Polymer Testing, vol. 66, pp.78-86, (2018).
DOI: 10.1016/j.polymertesting.2017.12.023
Google Scholar
[13]
Y. Cai, X. Xue, G. Han et al., "Novel π-conjugated polymer based on an extended thienoquinoid," Chemistry of Materials, vol. 30, no. 2, pp.319-323, (2018).
Google Scholar
[14]
D. Keles, M.C. Erer, E. Bolayir et al., "Conjugated polymers with benzothiadiazole and benzotriazole moieties for polymer solar cells," Renewable Energy, vol. 139, pp.1184-1193, (2019).
DOI: 10.1016/j.renene.2019.03.018
Google Scholar
[15]
Z.M.E. Fahim, S.M. Bouzzine, Y. Ait Aicha, M. Bouachrine, and M. Hamidi, "The bridged effect on the geometric, optoelectronic and charge transfer properties of the triphenylamine–bithiophene-based dyes: a DFT study," Research on Chemical Intermediates, vol. 44, no. 3, pp.2009-2023, (2018).
DOI: 10.1007/s11164-017-3211-1
Google Scholar
[16]
R. Megha, Y.T. Ravikiran, S.C. Vijaya Kumari, S. Thomas, Influence of n-type nickel ferrite in enhancing the AC conductivity of optimized polyaniline-nickel ferrite nanocomposite, Appl. Phys. A 123, 245 (2017).
DOI: 10.1007/s00339-017-0866-9
Google Scholar
[17]
S. Manjunatha, T. Machappa, A. Sunilkumar, Y.T. Ravikiran, Tungsten disulfide: An efficient material in enhancement of AC conductivity and dielectric properties of polyaniline, J. Mater. Sci. 29, 11581 (2018)
DOI: 10.1007/s10854-018-9255-1
Google Scholar
[18]
R. Megha, Y.T. Ravikiran, S.C.V. Kumari, H.G.R. Prakash, CH.V.V. Ramana, S. Thomas, Compos. Interfaces 26, 309 (2019)
Google Scholar
[19]
K.S. Siddiqi and A. Husen, Green synthesis, characterization and uses of Palladium/Platinum nanoparticles, Nanoscale research letters 11,482 (2016).
DOI: 10.1186/s11671-016-1695-z
Google Scholar
[20]
Koohpeima F, Mokhtarai M J and Khalafi S, The effect of silver nanoparticles on composite shear bond strength to dentin with different adhesion protocols, J Appl Oral Sci,25(4),367-73 (2017)
DOI: 10.1590/1678-7757-2016-0391
Google Scholar
[21]
M.K. Nasrabadi, A.E. Moghadam, R. Kumar and N. Nabipour, Electrochemical Performance Improvement of the Catalyst of the Methanol Microfuel Cell Using Carbon Nanotubes, International Journal of Chemical Engineering V-2021, 8 pages Article ID 8894768, (2021).
DOI: 10.1155/2021/8894768
Google Scholar
[22]
G.C. Marjanovic, Recent advances in polyaniline research: Polymerization mechanisms, structural aspects, properties and applications, Synth. Met. 177, 1 (2013).
Google Scholar
[23]
M. Rahaman, T.K. Chaki, D. Khastgir, Development of high-performance EMI shielding material from EVA, NBR, and their blends: effect of carbon black structure, J Mater Sci, 46, 3989-3999, (2011).
DOI: 10.1007/s10853-011-5326-x
Google Scholar
[24]
A. Ahmed. A. Ghamdi, A. Omar, A. Hartomy, R. Falleh, A. Solamy, T. Nikolay. Dishovsky, P. Malinova, Atanasov, L. Gabriela, Correlation between Electrical Conductivity and Microwave Shielding Effectiveness of Natural Rubber Based Composites, Containing Different Hybrid Fillers Obtained by Impregnation Technology, Materials Sciences and Applications, 7, 496-509, (2016).
DOI: 10.4236/msa.2016.79043
Google Scholar