[1]
L.B. Gunjal, S. Manjunatha, B. Chethan, N.M. Nagabhushana, Y.T. Ravikiran, T. Machappa, S. Thomas, Humidity sensing performance of polyaniline ‑ neodymium oxide composites, MRS Commun. XX (2023) 1–8.
DOI: 10.1557/s43579-023-00336-3
Google Scholar
[2]
A. Sunilkumar, S. Manjunatha, Y.T. Ravikiran, M. Revanasiddappa, M. Prashantkumar, T. Machappa, AC conductivity and dielectric studies in polypyrrole wrapped tungsten disulphide composites, Polym. Bull. (2021).
DOI: 10.1007/s00289-021-03552-w
Google Scholar
[3]
R. Megha, Y.T. Ravikiran, S.C. Vijaya Kumari, H.G. Rajprakash, S. Manjunatha, M. Revanasiddappa, M. Prashantkumar, S. Thomas, AC conductivity studies in copper decorated and zinc oxide embedded polypyrrole composite nanorods: Interfacial effects, Mater. Sci. Semicond. Process. 110 (2020) 104963.
DOI: 10.1016/j.mssp.2020.104963
Google Scholar
[4]
B. Chethan, H.G.R. Prakash, Y.T. Ravikiran, S.C.V. Kumari, S. Manjunatha, S. Thomas, Humidity sensing performance of hybrid nanorods of polyaniline-Yttrium oxide composite prepared by mechanical mixing method, Talanta. 215 (2020) 120906.
DOI: 10.1016/j.talanta.2020.120906
Google Scholar
[5]
A. Sunilkumar, S. Manjunatha, B. Chethan, Y.T. Ravikiran, T. Machappa, Polypyrrole–Tantalum Disulfide Composite: An Efficient Material for Fabrication of Room Temperature Operable Humidity Sensor, Sens. Actuators A Phys. (2019).
DOI: 10.1016/j.sna.2019.111593
Google Scholar
[6]
S. Manjunatha, T. Machappa, Y.T. Ravikiran, M. Chethan, M. Revanasiddappa, Room temperature humidity sensing performance of polyaniline – holmium oxide composite, Appl. Phys. A. 125 (2019) 361.
DOI: 10.1007/s00339-019-2638-1
Google Scholar
[7]
S. Manjunatha, T. Machappa, Y.T. Ravikiran, B. Chethan, A. Sunilkumar, Polyaniline based stable humidity sensor operable at room temperature, Phys. B Condens. Matter. 561 (2019) 170–178.
DOI: 10.1016/j.physb.2019.02.063
Google Scholar
[8]
K. Vinay, M. Revanasiddappa, S. Manjunatha, K. Shivakumar, Y.T. Ravikiran, Room temperature humidity sensing behaviour of silver decorated polyaniline composite Room temperature humidity sensing behaviour of silver decorated polyaniline composite, Mater. Res. Express. 6 (2019) 104003.
DOI: 10.1088/2053-1591/ab3624
Google Scholar
[9]
S. Manjunatha, A. Sunilkumar, Y.T. Ravikiran, T. Machappa, Effect of holmium oxide on impedance and dielectric behavior of polyaniline–holmium oxide composites, J. Mater. Sci. Mater. Electron. 30 (2019) 10332–10341.
DOI: 10.1007/s10854-019-01371-4
Google Scholar
[10]
R. Megha, Y.T. Ravikiran, S.C.V. Kumari, H.G.R. Prakash, M. Revanasiddappa, S. Manjunatha, S.G. Dastager, S. Thomas, Structural and electrical characterization studies for ternary composite of polypyrrole, J. Mater. Sci. Mater. Electron. 31 (2020) 18400–18411.
DOI: 10.1007/s10854-020-04386-4
Google Scholar
[11]
A. Sunilkumar, S. Manjunatha, T. Machappa, B. Chethan, Y.T. Ravikiran, A tungsten disulphide – polypyrrole composite-based humidity, Bull. Mater. Sci. 271 (2019) 2–6.
DOI: 10.1007/s12034-019-1955-5
Google Scholar
[12]
S. Manjunatha, B. Chethan, Y.T. Ravikiran, T. Machappa, Room temperature humidity sensor based on polyaniline- tungsten disulfide composite, AIP Conf. Proc. 1953 (2018) 030096-1-030096–4.
DOI: 10.1063/1.5032431
Google Scholar
[13]
B.M.B. Patel, M. Revanasiddappa, D.R. Rangaswamy, S. Manjunatha, Y.T. Ravikiran, Electrical conductivity and EMI shielding studies of iron-decorated polypyrrole-fly ash nanocomposites, Mater. Today Proc. 49 (2021) 2253–2259.
DOI: 10.1016/j.matpr.2021.09.337
Google Scholar
[14]
V. Babel, B.L. Hiran, A review on polyaniline composites: Synthesis, characterization, and applications, Polym. Compos. 42 (2021) 3142–3157.
DOI: 10.1002/pc.26048
Google Scholar
[15]
A. Shokry, M. Karim, M. Khalil, S. Ebrahim, J. El Nady, Supercapacitor based on polymeric binary composite of polythiophene and single-walled carbon nanotubes, Sci. Rep. 12 (2022) 1–13.
DOI: 10.1038/s41598-022-15477-z
Google Scholar
[16]
A. Husain, S. Ahmad, F. Mohammad, Synthesis, characterisation and ethanol sensing application of polythiophene/graphene nanocomposite, Mater. Chem. Phys. 239 (2020) 122324.
DOI: 10.1016/j.matchemphys.2019.122324
Google Scholar
[17]
X. Hong, W. Yu, D.D.L. Chung, Electric permittivity of reduced graphite oxide, Carbon N. Y. 111 (2017) 182–190.
DOI: 10.1016/j.carbon.2016.09.071
Google Scholar
[18]
S. Manjunatha, T. Machappa, A. Sunilkumar, Y.T. Ravikiran, Tungsten disulfide: an efficient material in enhancement of AC conductivity and dielectric properties of polyaniline, J. Mater. Sci. Mater. Electron. 29 (2018) 11581–11590.
DOI: 10.1007/s10854-018-9255-1
Google Scholar
[19]
S. Manjunatha, R. Megha, B. Chethan, M. Prashantkumar, Y.T. Ravikiran, T. Machappa, Structural and AC Electrical Properties of Tantalum Disulfide Embedded Polyaniline Composites, J. Mater. Eng. Perform. 30 (2021) 1885–1894.
DOI: 10.1007/s11665-021-05526-5
Google Scholar
[20]
A. Sunilkumar, S. Manjunatha, Y.T. Ravikiran, H. Devendrappa, T. Machappa, AC frequency-dependent dielectric studies of polypyrrole composites, AIP Conf. Proc. 080005 (2020) 080005-1-080005–4.
DOI: 10.1063/5.0009037
Google Scholar
[21]
N. Rezlescu, E. Rezlescu, Dielectric properties of copper containing ferrites, Phys. Status Solidi. 23 (1974) 575–582.
DOI: 10.1002/pssa.2210230229
Google Scholar
[22]
I. Sadiq, S. Naseem, M. Naeem Ashiq, M.A. Khan, S. Niaz, M.U. Rana, Structural and dielectric properties of doped ferrite nanomaterials suitable for microwave and biomedical applications, Prog. Nat. Sci. Mater. Int. 25 (2015) 419–424. https://doi.org/.
DOI: 10.1016/j.pnsc.2015.09.011
Google Scholar