Dielectric Response and Electric Modulus Studies of Polythiophene/Reduced Graphene Oxide Nanocomposites

Article Preview

Abstract:

Chemical oxidation reactions were used to create composite materials made of polythiophene (PTh) and reduced graphene oxide with varying compositions. To describe the samples, Fourier transform infrared spectroscopy (FTIR) was used. The hydroxyl (OH) stretching vibrations of the -COOH functional group and adsorbed H2O molecules are responsible for the intense bands at 3386 cm-1 and 1302 cm-1. O-H vibrations can be attributed to absorption at a wavelength of 1610 cm-1. C-S bending mode of thiophene ring has produced the peak at 666 cm-1. The dielectric constant, tangent loss, and electric modulus with the applied AC frequency for the polythiophene/reduced graphene oxide composites were studied.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1099)

Pages:

69-74

Citation:

Online since:

October 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L.B. Gunjal, S. Manjunatha, B. Chethan, N.M. Nagabhushana, Y.T. Ravikiran, T. Machappa, S. Thomas, Humidity sensing performance of polyaniline ‑ neodymium oxide composites, MRS Commun. XX (2023) 1–8.

DOI: 10.1557/s43579-023-00336-3

Google Scholar

[2] A. Sunilkumar, S. Manjunatha, Y.T. Ravikiran, M. Revanasiddappa, M. Prashantkumar, T. Machappa, AC conductivity and dielectric studies in polypyrrole wrapped tungsten disulphide composites, Polym. Bull. (2021).

DOI: 10.1007/s00289-021-03552-w

Google Scholar

[3] R. Megha, Y.T. Ravikiran, S.C. Vijaya Kumari, H.G. Rajprakash, S. Manjunatha, M. Revanasiddappa, M. Prashantkumar, S. Thomas, AC conductivity studies in copper decorated and zinc oxide embedded polypyrrole composite nanorods: Interfacial effects, Mater. Sci. Semicond. Process. 110 (2020) 104963.

DOI: 10.1016/j.mssp.2020.104963

Google Scholar

[4] B. Chethan, H.G.R. Prakash, Y.T. Ravikiran, S.C.V. Kumari, S. Manjunatha, S. Thomas, Humidity sensing performance of hybrid nanorods of polyaniline-Yttrium oxide composite prepared by mechanical mixing method, Talanta. 215 (2020) 120906.

DOI: 10.1016/j.talanta.2020.120906

Google Scholar

[5] A. Sunilkumar, S. Manjunatha, B. Chethan, Y.T. Ravikiran, T. Machappa, Polypyrrole–Tantalum Disulfide Composite: An Efficient Material for Fabrication of Room Temperature Operable Humidity Sensor, Sens. Actuators A Phys. (2019).

DOI: 10.1016/j.sna.2019.111593

Google Scholar

[6] S. Manjunatha, T. Machappa, Y.T. Ravikiran, M. Chethan, M. Revanasiddappa, Room temperature humidity sensing performance of polyaniline – holmium oxide composite, Appl. Phys. A. 125 (2019) 361.

DOI: 10.1007/s00339-019-2638-1

Google Scholar

[7] S. Manjunatha, T. Machappa, Y.T. Ravikiran, B. Chethan, A. Sunilkumar, Polyaniline based stable humidity sensor operable at room temperature, Phys. B Condens. Matter. 561 (2019) 170–178.

DOI: 10.1016/j.physb.2019.02.063

Google Scholar

[8] K. Vinay, M. Revanasiddappa, S. Manjunatha, K. Shivakumar, Y.T. Ravikiran, Room temperature humidity sensing behaviour of silver decorated polyaniline composite Room temperature humidity sensing behaviour of silver decorated polyaniline composite, Mater. Res. Express. 6 (2019) 104003.

DOI: 10.1088/2053-1591/ab3624

Google Scholar

[9] S. Manjunatha, A. Sunilkumar, Y.T. Ravikiran, T. Machappa, Effect of holmium oxide on impedance and dielectric behavior of polyaniline–holmium oxide composites, J. Mater. Sci. Mater. Electron. 30 (2019) 10332–10341.

DOI: 10.1007/s10854-019-01371-4

Google Scholar

[10] R. Megha, Y.T. Ravikiran, S.C.V. Kumari, H.G.R. Prakash, M. Revanasiddappa, S. Manjunatha, S.G. Dastager, S. Thomas, Structural and electrical characterization studies for ternary composite of polypyrrole, J. Mater. Sci. Mater. Electron. 31 (2020) 18400–18411.

DOI: 10.1007/s10854-020-04386-4

Google Scholar

[11] A. Sunilkumar, S. Manjunatha, T. Machappa, B. Chethan, Y.T. Ravikiran, A tungsten disulphide – polypyrrole composite-based humidity, Bull. Mater. Sci. 271 (2019) 2–6.

DOI: 10.1007/s12034-019-1955-5

Google Scholar

[12] S. Manjunatha, B. Chethan, Y.T. Ravikiran, T. Machappa, Room temperature humidity sensor based on polyaniline- tungsten disulfide composite, AIP Conf. Proc. 1953 (2018) 030096-1-030096–4.

DOI: 10.1063/1.5032431

Google Scholar

[13] B.M.B. Patel, M. Revanasiddappa, D.R. Rangaswamy, S. Manjunatha, Y.T. Ravikiran, Electrical conductivity and EMI shielding studies of iron-decorated polypyrrole-fly ash nanocomposites, Mater. Today Proc. 49 (2021) 2253–2259.

DOI: 10.1016/j.matpr.2021.09.337

Google Scholar

[14] V. Babel, B.L. Hiran, A review on polyaniline composites: Synthesis, characterization, and applications, Polym. Compos. 42 (2021) 3142–3157.

DOI: 10.1002/pc.26048

Google Scholar

[15] A. Shokry, M. Karim, M. Khalil, S. Ebrahim, J. El Nady, Supercapacitor based on polymeric binary composite of polythiophene and single-walled carbon nanotubes, Sci. Rep. 12 (2022) 1–13.

DOI: 10.1038/s41598-022-15477-z

Google Scholar

[16] A. Husain, S. Ahmad, F. Mohammad, Synthesis, characterisation and ethanol sensing application of polythiophene/graphene nanocomposite, Mater. Chem. Phys. 239 (2020) 122324.

DOI: 10.1016/j.matchemphys.2019.122324

Google Scholar

[17] X. Hong, W. Yu, D.D.L. Chung, Electric permittivity of reduced graphite oxide, Carbon N. Y. 111 (2017) 182–190.

DOI: 10.1016/j.carbon.2016.09.071

Google Scholar

[18] S. Manjunatha, T. Machappa, A. Sunilkumar, Y.T. Ravikiran, Tungsten disulfide: an efficient material in enhancement of AC conductivity and dielectric properties of polyaniline, J. Mater. Sci. Mater. Electron. 29 (2018) 11581–11590.

DOI: 10.1007/s10854-018-9255-1

Google Scholar

[19] S. Manjunatha, R. Megha, B. Chethan, M. Prashantkumar, Y.T. Ravikiran, T. Machappa, Structural and AC Electrical Properties of Tantalum Disulfide Embedded Polyaniline Composites, J. Mater. Eng. Perform. 30 (2021) 1885–1894.

DOI: 10.1007/s11665-021-05526-5

Google Scholar

[20] A. Sunilkumar, S. Manjunatha, Y.T. Ravikiran, H. Devendrappa, T. Machappa, AC frequency-dependent dielectric studies of polypyrrole composites, AIP Conf. Proc. 080005 (2020) 080005-1-080005–4.

DOI: 10.1063/5.0009037

Google Scholar

[21] N. Rezlescu, E. Rezlescu, Dielectric properties of copper containing ferrites, Phys. Status Solidi. 23 (1974) 575–582.

DOI: 10.1002/pssa.2210230229

Google Scholar

[22] I. Sadiq, S. Naseem, M. Naeem Ashiq, M.A. Khan, S. Niaz, M.U. Rana, Structural and dielectric properties of doped ferrite nanomaterials suitable for microwave and biomedical applications, Prog. Nat. Sci. Mater. Int. 25 (2015) 419–424. https://doi.org/.

DOI: 10.1016/j.pnsc.2015.09.011

Google Scholar