[1]
S. Laschat, A. Baro, N. Steinke, F. Giesselmann, C. Hagele, G. Scalia, R. Judele, E. Kapatsina, S. Sauer, A. Schreivogel, M. Tosoni, Angew. Chem. Int. Ed. 46 (2007) 4832
DOI: 10.1002/anie.200604203
Google Scholar
[2]
Shri Singh, "Liquid crystals fundamentals" by World Scientific Publishing Co. Pvt. Ltd. ISBN 98102-4250-6, 2002.
Google Scholar
[3]
S.T. Wu and D. K. Yang, "Reflective Liquid Crystal Displays"; 2001, Wiley, New York E. H. Stupp and M. S. Brennesholtz, "Projection Displays"; 1998, Wiley, New YorkC.
DOI: 10.1016/s0141-9382(99)00011-6
Google Scholar
[4]
Z Khoo and S. T. Wu, "Optics and Nonlinear Optics of Liquid Crystals"; 1993, World Scientific.
Google Scholar
[5]
Mani, Santosh, et al. "Wavelength and temperature dependent refractive index of polymer dispersed nematic liquid crystal." 2022 First International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT). IEEE, 2022.
DOI: 10.1109/iceeict53079.2022.9768652
Google Scholar
[6]
Abass, Aimi, et al. "Active liquid crystal tuning of metallic nano antenna enhanced light emission from colloidal quantum dots." Nano letters 14.10 (2014): 5555-5560.
DOI: 10.1021/nl501955e
Google Scholar
[7]
Rastogi, Ayushi, et al. "Study of an interesting physical mechanism of memory effect in nematic liquid crystal dispersed with quantum dots." Liquid Crystals 46.5 (2019): 725-735.
DOI: 10.1080/02678292.2018.1523477
Google Scholar
[8]
Subedi, Subhangi, et al. "Electrically Switchable Anisometric Carbon Quantum Dots Exhibiting Linearly Polarized Photoluminescence: Syntheses, Anisotropic Properties, and Facile Control of Uniaxial Orientation." ACS nano 16.4 (2022): 6480-6492.
DOI: 10.1021/acsnano.2c00758
Google Scholar
[9]
Mani, Santosh, et al. "Optical and Electrical Characterization of Polymer Dispersed Nematic Liquid Crystals." Key Engineering Materials. Vol. 934. Trans Tech Publications Ltd, 2022.
DOI: 10.4028/p-5x10ni
Google Scholar
[10]
Daniela Ailincai, Daniela Pamfil, Luminita Marin,Multiple, "Bio-responsive polymer dispersed liquid crystal composites for sensing applications, Journal of Molecular Liquids" (2018), Volume 272, 572-582
DOI: 10.1016/j.molliq.2018.09.125
Google Scholar
[11]
Mishra, Krishnakant G., et al. "Comparative study of nanoparticles doped in liquid crystal polymer system." Journal of Molecular Liquids 224 (2016): 668-671.
DOI: 10.1016/j.molliq.2016.10.075
Google Scholar
[12]
Kuznetsova, Yulia V., et al. "Cadmium sulfide quantum dots in water media: Enhanced photoluminescence, dispersion and stability." Journal of Molecular Liquids 371 (2023): 121084.
DOI: 10.1016/j.molliq.2022.121084
Google Scholar
[13]
Mani, Santosh, et al. "Effect of polymer concentration on optical and electrical properties of liquid crystals for photonic applications." Materials Today: Proceedings 62 (2022): 7035-7039.
DOI: 10.1016/j.matpr.2022.01.057
Google Scholar
[14]
Pozhidaev, E. P., et al. "Polymer dispersed liquid crystals with electrically controlled light scattering in the visible and near-infrared ranges." Optical Materials Express 10.12 (2020): 3030-3040
DOI: 10.1364/OME.410163
Google Scholar
[15]
Subedi, Subhangi, et al. "Electrically Switchable Anisometric Carbon Quantum Dots Exhibiting Linearly Polarized Photoluminescence: Syntheses, Anisotropic Properties, and Facile Control of Uniaxial Orientation." ACS nano 16.4 (2022): 6480-6492.
DOI: 10.1021/acsnano.2c00758
Google Scholar
[16]
Yu, Meina, et al. "Luminescence enhancement, encapsulation, and patterning of quantum dots toward display applications." Advanced Functional Materials 32.13 (2022): 2109472.
DOI: 10.1002/adfm.202109472
Google Scholar
[17]
Mishra, Krishnakant K., Sheshmani K. Dubey, and Santosh A. Mani. "Optical characterization of inorganic nanoparticles doped in polymer dispersed liquid crystal." Molecular Crystals and Liquid Crystals 647.1 (2017): 244-252.
DOI: 10.1080/15421406.2017.1289603
Google Scholar
[18]
Mani, Santosh A., et al. "Investigations of optical and thermal response of polymer dispersed binary liquid crystals." Molecular Crystals and Liquid Crystals 646.1 (2017): 183-193.
DOI: 10.1080/15421406.2017.1287478
Google Scholar
[19]
Zhang, Zhiwei, et al. "One-step microwave preparation of carbon dots-composited G-quartet hydrogels with controllable chirality and circularly polarized luminescence." Carbon 203 (2023): 39-46.
DOI: 10.1016/j.carbon.2022.11.023
Google Scholar
[20]
Wang, Yijie, et al. "3D ZnO hollow spheres-dispersed CsPbBr3 quantum dots S-scheme heterojunctions for high-efficient CO2 photoreduction." Journal of Alloys and Compounds 945 (2023): 169197.
DOI: 10.1016/j.jallcom.2023.169197
Google Scholar
[21]
Mani, Santosh, et al. "The influence of polymer on optical and thermal properties of nematic liquid crystals." Journal of Physics: Conference Series. Vol. 2070. No. 1. IOP Publishing, 2021.
Google Scholar
[22]
E. Lueder, "Liquid Crystal Displays"; 2001, Wiley, New York.
Google Scholar
[23]
Hongwen Ren, Su Xu, and Shin-Tson Wu, "Gradient polymer network liquid crystal with a large refractive index change ", Optics Express, Vol. 20, No. 24 / 26464, 9 Nov 2012 -19 November (2012)
DOI: 10.1364/oe.20.026464
Google Scholar
[24]
Jun Li, Sebastian Gauza, and Shin-Tson Wu, "Temperature effect on liquid crystal refractive indices" journal of applied physics volume 96, number 1, July (2004)
DOI: 10.1063/1.1757034
Google Scholar
[25]
Jun Li, Greg Baird, Yi-Hsin Lin, Hongwen Ren, Shin-Tson Wu, "Refractive-index matching between liquid crystals and photopolymers", Society for Information Display 1071-0922/05/1312-1017, 2005.
DOI: 10.1889/1.2150371
Google Scholar
[26]
Rita A. Gharde, Krishnakant Mishra "Optical study of Liquid Crystal Polymer System doped with ZnO Nanoparticles", Journal of Basic and Applied Engineering Research" ISSN: 2350-0077; Online ISSN: 2350-0255; Volume 2, Number 15; April-June 2015, pp.1272-1276, © Krishi Sanskriti Publications.
Google Scholar
[27]
Dierking. I. "Polymer modified Liquid Crystals" published in Royal Society of Chemistry. 372 p. (RSC Soft Matter Series; vol.8), Cambridge, United Kingdom, 4 Jan (2019)
Google Scholar
[28]
Satyendra Kumar "Liquid Crystals: Experimental Study of Physical Properties and Phase Transitions Published in Cambridge University Press, ISBN10-052118794X, ISBN13-9780521187947, April (2011)
Google Scholar
[29]
I.R. Nemitz, E. Lacaze, and C. Rosenblatt "Electroclinic effect in a chiral paranematic liquid crystal layer above the bulk nematic to isotropic transition temperature", Phys. Rev. E 93, 022701 (2016)
DOI: 10.1103/physreve.93.022701
Google Scholar
[30]
Pote, N., Doke, S., Lohar, A., Raghavendra Reddy, V., Kolekar, Y.D., Ganguly, P. and Banpurkar, A., 2023. Improvement in molecular ordering of ferroelectric liquid crystal by incorporating CuGaS2/ZnS core/shell quantum dots. Liquid Crystals, pp.1-10.
DOI: 10.1080/02678292.2023.2181994
Google Scholar
[31]
Bezrukov, A. and Galyametdinov, Y., 2023. Dynamic Flow Control over Optical Properties of Liquid Crystal–Quantum Dot Hybrids in Microfluidic Devices. Micromachines, 14(5), p.990.
DOI: 10.3390/mi14050990
Google Scholar
[32]
Mani S, Khosla S, Sarawade P. Effect of Quantum Dots Dispersion on the Structural, Optical, and Thermal Properties of Liquid Crystal System. Advanced Materials Research. 2023 May 29;1176:33-42.
DOI: 10.4028/p-82i41e
Google Scholar
[33]
Kurilov AD, Chausov DN, Osipova VV, Sagdeev DO, Chekulaev IS, Kucherov RN, Belyaev VV, Galyametdinov YG. Concentration-dependent dielectric and electro-optical properties of composites based on nematic liquid crystals and CdS: Mn quantum dots. Soft Matter. 2023;19(11):2110-9.
DOI: 10.1039/d2sm01352e
Google Scholar
[34]
Yadav, S., Malik, P. and Malik, P., 2023. CdTe quantum dot-polymer stabilized blue phase liquid crystal nanocomposite with wide blue phase and improved electro-optical responses. Optical Materials, 137, p.113608.
DOI: 10.1016/j.optmat.2023.113608
Google Scholar
[35]
Wen, X., Liu, T., Fan, J., Gong, K. and Song, J., 2023. Electrically controlled liquid crystal nonlinear optical devices prepared by multi-layer composite structures. Journal of Molecular Liquids, 382, p.121889.
DOI: 10.1016/j.molliq.2023.121889
Google Scholar