Impact of Quantum Dots on Refractive Index of Nematic Liquid Crystal Polymer System

Article Preview

Abstract:

In the present study the effect of two quantum dots ZnS and CdSe on the Refractive Index of Nematic Liquid Crystal Polymer System (NLCPS) is investigated and compared. The measurement was performed for both the systems separately, using an Abbe Refractometer, within a temperature range of 20°C to 80°C with wavelengths in the visible spectrum. The refractive index with respect to temperature for various wavelengths was studied. We observed that the response of ZnS quantum dots dispersed in NLCPS was found to be better as compared to the CdSe system. This study may be useful for display and sensor applications.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1099)

Pages:

109-117

Citation:

Online since:

October 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Laschat, A. Baro, N. Steinke, F. Giesselmann, C. Hagele, G. Scalia, R. Judele, E. Kapatsina, S. Sauer, A. Schreivogel, M. Tosoni, Angew. Chem. Int. Ed. 46 (2007) 4832

DOI: 10.1002/anie.200604203

Google Scholar

[2] Shri Singh, "Liquid crystals fundamentals" by World Scientific Publishing Co. Pvt. Ltd. ISBN 98102-4250-6, 2002.

Google Scholar

[3] S.T. Wu and D. K. Yang, "Reflective Liquid Crystal Displays"; 2001, Wiley, New York E. H. Stupp and M. S. Brennesholtz, "Projection Displays"; 1998, Wiley, New YorkC.

DOI: 10.1016/s0141-9382(99)00011-6

Google Scholar

[4] Z Khoo and S. T. Wu, "Optics and Nonlinear Optics of Liquid Crystals"; 1993, World Scientific.

Google Scholar

[5] Mani, Santosh, et al. "Wavelength and temperature dependent refractive index of polymer dispersed nematic liquid crystal." 2022 First International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT). IEEE, 2022.

DOI: 10.1109/iceeict53079.2022.9768652

Google Scholar

[6] Abass, Aimi, et al. "Active liquid crystal tuning of metallic nano antenna enhanced light emission from colloidal quantum dots." Nano letters 14.10 (2014): 5555-5560.

DOI: 10.1021/nl501955e

Google Scholar

[7] Rastogi, Ayushi, et al. "Study of an interesting physical mechanism of memory effect in nematic liquid crystal dispersed with quantum dots." Liquid Crystals 46.5 (2019): 725-735.

DOI: 10.1080/02678292.2018.1523477

Google Scholar

[8] Subedi, Subhangi, et al. "Electrically Switchable Anisometric Carbon Quantum Dots Exhibiting Linearly Polarized Photoluminescence: Syntheses, Anisotropic Properties, and Facile Control of Uniaxial Orientation." ACS nano 16.4 (2022): 6480-6492.

DOI: 10.1021/acsnano.2c00758

Google Scholar

[9] Mani, Santosh, et al. "Optical and Electrical Characterization of Polymer Dispersed Nematic Liquid Crystals." Key Engineering Materials. Vol. 934. Trans Tech Publications Ltd, 2022.

DOI: 10.4028/p-5x10ni

Google Scholar

[10] Daniela Ailincai, Daniela Pamfil, Luminita Marin,Multiple, "Bio-responsive polymer dispersed liquid crystal composites for sensing applications, Journal of Molecular Liquids" (2018), Volume 272, 572-582

DOI: 10.1016/j.molliq.2018.09.125

Google Scholar

[11] Mishra, Krishnakant G., et al. "Comparative study of nanoparticles doped in liquid crystal polymer system." Journal of Molecular Liquids 224 (2016): 668-671.

DOI: 10.1016/j.molliq.2016.10.075

Google Scholar

[12] Kuznetsova, Yulia V., et al. "Cadmium sulfide quantum dots in water media: Enhanced photoluminescence, dispersion and stability." Journal of Molecular Liquids 371 (2023): 121084.

DOI: 10.1016/j.molliq.2022.121084

Google Scholar

[13] Mani, Santosh, et al. "Effect of polymer concentration on optical and electrical properties of liquid crystals for photonic applications." Materials Today: Proceedings 62 (2022): 7035-7039.

DOI: 10.1016/j.matpr.2022.01.057

Google Scholar

[14] Pozhidaev, E. P., et al. "Polymer dispersed liquid crystals with electrically controlled light scattering in the visible and near-infrared ranges." Optical Materials Express 10.12 (2020): 3030-3040

DOI: 10.1364/OME.410163

Google Scholar

[15] Subedi, Subhangi, et al. "Electrically Switchable Anisometric Carbon Quantum Dots Exhibiting Linearly Polarized Photoluminescence: Syntheses, Anisotropic Properties, and Facile Control of Uniaxial Orientation." ACS nano 16.4 (2022): 6480-6492.

DOI: 10.1021/acsnano.2c00758

Google Scholar

[16] Yu, Meina, et al. "Luminescence enhancement, encapsulation, and patterning of quantum dots toward display applications." Advanced Functional Materials 32.13 (2022): 2109472.

DOI: 10.1002/adfm.202109472

Google Scholar

[17] Mishra, Krishnakant K., Sheshmani K. Dubey, and Santosh A. Mani. "Optical characterization of inorganic nanoparticles doped in polymer dispersed liquid crystal." Molecular Crystals and Liquid Crystals 647.1 (2017): 244-252.

DOI: 10.1080/15421406.2017.1289603

Google Scholar

[18] Mani, Santosh A., et al. "Investigations of optical and thermal response of polymer dispersed binary liquid crystals." Molecular Crystals and Liquid Crystals 646.1 (2017): 183-193.

DOI: 10.1080/15421406.2017.1287478

Google Scholar

[19] Zhang, Zhiwei, et al. "One-step microwave preparation of carbon dots-composited G-quartet hydrogels with controllable chirality and circularly polarized luminescence." Carbon 203 (2023): 39-46.

DOI: 10.1016/j.carbon.2022.11.023

Google Scholar

[20] Wang, Yijie, et al. "3D ZnO hollow spheres-dispersed CsPbBr3 quantum dots S-scheme heterojunctions for high-efficient CO2 photoreduction." Journal of Alloys and Compounds 945 (2023): 169197.

DOI: 10.1016/j.jallcom.2023.169197

Google Scholar

[21] Mani, Santosh, et al. "The influence of polymer on optical and thermal properties of nematic liquid crystals." Journal of Physics: Conference Series. Vol. 2070. No. 1. IOP Publishing, 2021.

Google Scholar

[22] E. Lueder, "Liquid Crystal Displays"; 2001, Wiley, New York.

Google Scholar

[23] Hongwen Ren, Su Xu, and Shin-Tson Wu, "Gradient polymer network liquid crystal with a large refractive index change ", Optics Express, Vol. 20, No. 24 / 26464, 9 Nov 2012 -19 November (2012)

DOI: 10.1364/oe.20.026464

Google Scholar

[24] Jun Li, Sebastian Gauza, and Shin-Tson Wu, "Temperature effect on liquid crystal refractive indices" journal of applied physics volume 96, number 1, July (2004)

DOI: 10.1063/1.1757034

Google Scholar

[25] Jun Li, Greg Baird, Yi-Hsin Lin, Hongwen Ren, Shin-Tson Wu, "Refractive-index matching between liquid crystals and photopolymers", Society for Information Display 1071-0922/05/1312-1017, 2005.

DOI: 10.1889/1.2150371

Google Scholar

[26] Rita A. Gharde, Krishnakant Mishra "Optical study of Liquid Crystal Polymer System doped with ZnO Nanoparticles", Journal of Basic and Applied Engineering Research" ISSN: 2350-0077; Online ISSN: 2350-0255; Volume 2, Number 15; April-June 2015, pp.1272-1276, © Krishi Sanskriti Publications.

Google Scholar

[27] Dierking. I. "Polymer modified Liquid Crystals" published in Royal Society of Chemistry. 372 p. (RSC Soft Matter Series; vol.8), Cambridge, United Kingdom, 4 Jan (2019)

Google Scholar

[28] Satyendra Kumar "Liquid Crystals: Experimental Study of Physical Properties and Phase Transitions Published in Cambridge University Press, ISBN10-052118794X, ISBN13-9780521187947, April (2011)

Google Scholar

[29] I.R. Nemitz, E. Lacaze, and C. Rosenblatt "Electroclinic effect in a chiral paranematic liquid crystal layer above the bulk nematic to isotropic transition temperature", Phys. Rev. E 93, 022701 (2016)

DOI: 10.1103/physreve.93.022701

Google Scholar

[30] Pote, N., Doke, S., Lohar, A., Raghavendra Reddy, V., Kolekar, Y.D., Ganguly, P. and Banpurkar, A., 2023. Improvement in molecular ordering of ferroelectric liquid crystal by incorporating CuGaS2/ZnS core/shell quantum dots. Liquid Crystals, pp.1-10.

DOI: 10.1080/02678292.2023.2181994

Google Scholar

[31] Bezrukov, A. and Galyametdinov, Y., 2023. Dynamic Flow Control over Optical Properties of Liquid Crystal–Quantum Dot Hybrids in Microfluidic Devices. Micromachines, 14(5), p.990.

DOI: 10.3390/mi14050990

Google Scholar

[32] Mani S, Khosla S, Sarawade P. Effect of Quantum Dots Dispersion on the Structural, Optical, and Thermal Properties of Liquid Crystal System. Advanced Materials Research. 2023 May 29;1176:33-42.

DOI: 10.4028/p-82i41e

Google Scholar

[33] Kurilov AD, Chausov DN, Osipova VV, Sagdeev DO, Chekulaev IS, Kucherov RN, Belyaev VV, Galyametdinov YG. Concentration-dependent dielectric and electro-optical properties of composites based on nematic liquid crystals and CdS: Mn quantum dots. Soft Matter. 2023;19(11):2110-9.

DOI: 10.1039/d2sm01352e

Google Scholar

[34] Yadav, S., Malik, P. and Malik, P., 2023. CdTe quantum dot-polymer stabilized blue phase liquid crystal nanocomposite with wide blue phase and improved electro-optical responses. Optical Materials, 137, p.113608.

DOI: 10.1016/j.optmat.2023.113608

Google Scholar

[35] Wen, X., Liu, T., Fan, J., Gong, K. and Song, J., 2023. Electrically controlled liquid crystal nonlinear optical devices prepared by multi-layer composite structures. Journal of Molecular Liquids, 382, p.121889.

DOI: 10.1016/j.molliq.2023.121889

Google Scholar