[1]
Wang, Wei, Meigui Xu, Xiaomin Xu, Wei Zhou, and Zongping Shao, Perovskite oxide-based electrodes for high‐performance photoelectrochemical water splitting, Angewandte Chemie International Edition 59, 1 (2020) 136-152.
DOI: 10.1002/anie.201900292
Google Scholar
[2]
Tashie-Lewis, Bernard Chukwudi, and Somtochukwu Godfrey Nnabuife, Hydrogen production, distribution, storage and power conversion in a hydrogen economy-a technology review. Chemical Engineering Journal Advances 8 (2021) 100172.
DOI: 10.1016/j.ceja.2021.100172
Google Scholar
[3]
Acar, Canan, Ibrahim Dincer, and Greg F. Naterer, Review of photocatalytic water‐splitting methods for sustainable hydrogen production, International Journal of Energy Research 40, no. 11 (2016) 1449-1473.
DOI: 10.1002/er.3549
Google Scholar
[4]
Fajrina, Nur, and Muhammad Tahir,A critical review in strategies to improve photocatalytic water splitting towards hydrogen production, International Journal of Hydrogen Energy 44, no. 2 (2019) 540-577.
DOI: 10.1016/j.ijhydene.2018.10.200
Google Scholar
[5]
Fujishima, Akira, and Kenichi Honda. Electrochemical photolysis of water at a semiconductor electrode, nature 238, no. 5358 (1972) 37-38.
DOI: 10.1038/238037a0
Google Scholar
[6]
Freeman, Emma, Santosh Kumar, Sophie R. Thomas, Hayley Pickering, David J. Fermin, and Salvador Eslava, PrFeO3 Photocathodes prepared through spray pyrolysis, ChemElectroChem 7, no. 6 (2020) 1365-1372.
DOI: 10.1002/celc.201902005
Google Scholar
[7]
Freeman, Emma, Santosh Kumar, Veronica Celorrio, Min Su Park, Jong Hak Kim, David J. Fermin, and Salvador Eslava, Strategies for the deposition of LaFeO3 photocathodes: improving the photocurrent with a polymer template, Sustainable Energy & Fuels 4, no. 2 (2020): 884-894.
DOI: 10.1039/c9se01103j
Google Scholar
[8]
Aroutiounian, V. M., V. M. Arakelyan, and G. E. Shahnazaryan, Metal oxide photoelectrodes for hydrogen generation using solar radiation-driven water splitting, Solar Energy 78, no. 5 (2005) 581-592.
DOI: 10.1016/j.solener.2004.02.002
Google Scholar
[9]
Wei, Kexin, Yousef Faraj, Gang Yao, Ruzhen Xie, and Bo Lai, Strategies for improving perovskite photocatalysts reactivity for organic pollutants degradation: A review on recent progress, Chemical Engineering Journal 414 (2021) 128783.
DOI: 10.1016/j.cej.2021.128783
Google Scholar
[10]
Yin, Wan-Jian, Baicheng Weng, Jie Ge, Qingde Sun, Zhenzhu Li, and Yanfa Yan, Oxide perovskites, double perovskites and derivatives for electrocatalysis, photocatalysis, and photovoltaics, Energy & Environmental Science 12, no. 2 (2019) 442-462.
DOI: 10.1039/c8ee01574k
Google Scholar
[11]
Cyza, Anna, Agnieszka Kopia, Łukasz Cieniek, and Jan Kusiński, Structural characterization of Sr doped LaFeO3 thin films prepared by pulsed electron deposition method, Materials Today: Proceedings 3, no. 8 (2016) 2707-2712.
DOI: 10.1016/j.matpr.2016.06.017
Google Scholar
[12]
Ma, L., S. Y. Ma, X. F. Shen, T. T. Wang, X. H. Jiang, Q. Chen, Z. Qiang, H. M. Yang, and H. Chen. PrFeO3 hollow nanofibers as a highly efficient gas sensor for acetone detection, Sensors and Actuators B: Chemical, 255 (2018) 2546-2554.
DOI: 10.1016/j.snb.2017.09.060
Google Scholar
[13]
Aranthady, Chethana, Teena Jangid, Kapil Gupta, Abhishek Kumar Mishra, S. D. Kaushik, V. Siruguri, G. Mohan Rao, Ganapati V. Shanbhag, and Nalini G. Sundaram, Selective SO2 detection at low concentration by Ca substituted LaFeO3 chemiresistive gas sensor: a comparative study of LaFeO3 pellet vs thin film, Sensors and Actuators B: Chemical 329 (2021) 129211.
DOI: 10.1016/j.snb.2020.129211
Google Scholar
[14]
Chen, Yanping, Dandan Wang, Hongwei Qin, Heng Zhang, Zhongli Zhang, Guangjun Zhou, Chengyong Gao, and Jifan Hu. CO2 sensing properties and mechanism of PrFeO3 and NdFeO3 thick film sensor, Journal of Rare Earths 37, no. 1 (2019) 80-87.
DOI: 10.1016/j.jre.2018.06.007
Google Scholar
[15]
Wang, Qizhao, Juhong Lian, Yan Bai, Juan Hui, Junbo Zhong, Jianzhang Li, Ning An, Jie Yu, and Fangping Wang. Photocatalytic activity of hydrogen production from water over TiO2 with different crystal structures, Materials Science in Semiconductor Processing 40 (2015) 418-423.
DOI: 10.1016/j.mssp.2015.06.089
Google Scholar
[16]
Patil, Yogita, R. B. Pedhekar, and F. C. Raghuwanshi, Palladium-Doped Zinc Oxide Nanomaterial for Liquefied Petroleum Gas Detection, International Journal of Engineering Science Invention (IJESI), 9(2020) 32-42.
Google Scholar
[17]
Reza Abazari, Soheila Sanati, Perovskite LaFeO3 nanoparticles synthesized by the reverse microemulsion nanoreactors in the presence of aerosol–OT: morphology, crystal structure, and their optical properties Superlattices and Microstructures Volume 64,2013, Pages 148-157
DOI: 10.1016/j.spmi.2013.09.017
Google Scholar
[18]
Mohammed Ismael and Michael Wark, Perovskite-type LaFeO3: Photoelectrochemical Properties and Photocatalytic Degradation of Organic Pollutants Under Visible Light Irradiation, 2019, 9(4), 342
DOI: 10.3390/catal9040342
Google Scholar