[1]
Novoselov, Kostya S., Daria V. Andreeva, Wencai Ren, and Guangcun Shan, Graphene and other two-dimensional materials, Frontiers of Physics 14 (2019): 1-4.
DOI: 10.1007/s11467-018-0835-6
Google Scholar
[2]
Chang, Cheng, Wei Chen, Ye Chen, Yonghua Chen, Yu Chen, Feng Ding, Chunhai Fan et al, Recent progress on two-dimensional materials, Acta Phys.-Chim. Sin 37, No. 12 (2021): 2108017.
Google Scholar
[3]
Geim, Andre K., and Konstantin S. Novoselov, The rise of graphene, Nature materials 6, No. 3 (2007): 183-191.
Google Scholar
[4]
Zhang, Hua, Ultrathin two-dimensional nanomaterials, ACS nano 9, No. 10 (2015): 9451-9469.
DOI: 10.1021/acsnano.5b05040
Google Scholar
[5]
Bhimanapati, Ganesh R., Zhong Lin, Vincent Meunier, Yeonwoong Jung, Judy Cha, Saptarshi Das, Di Xiao et al, Recent advances in two-dimensional materials beyond graphene, ACS nano 9, No. 12 (2015): 11509-11539.
DOI: 10.1021/acsnano.5b05556
Google Scholar
[6]
Golberg, Dmitri, Yoshio Bando, Yang Huang, Takeshi Terao, Masanori Mitome, Chengchun Tang, and Chunyi Zhi, Boron nitride nanotubes and nanosheets, ACS nano 4, No. 6 (2010): 2979-2993.
DOI: 10.1021/nn1006495
Google Scholar
[7]
Pakdel, Amir, Yoshio Bando, and Dmitri Golberg, Nano boron nitride flatland, Chemical Society Reviews 43, No. 3 (2014): 934-959.
DOI: 10.1039/c3cs60260e
Google Scholar
[8]
Kubota, Yoichi, Kenji Watanabe, Osamu Tsuda, and Takashi Taniguchi, Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure, Science 317, No. 5840 (2007): 932-934.
DOI: 10.1126/science.1144216
Google Scholar
[9]
Wu, Menghao, Xiaojun Wu, Yong Pei, Yong Wang, and Xiao Cheng Zeng, Three dimensional network model of carbon containing only sp 2-carbon bonds and boron nitride analogues, Chemical communications 47, No. 15 (2011): 4406-4408.
DOI: 10.1039/c0cc05738j
Google Scholar
[10]
Arenal, Raul, Xavier Blase, and Annick Loiseau, Boron-nitride and boron-carbonitride nanotubes: synthesis, characterization and theory, Advances in Physics 59, No. 2 (2010): 101-179.
DOI: 10.1080/00018730903562033
Google Scholar
[11]
Golberg, Dmitri, Yoshio Bando, C. C. Tang, and C. Y. Zhi, Boron nitride nanotubes, Advanced Materials 19, No. 18 (2007): 2413-2432.
DOI: 10.1002/adma.200700179
Google Scholar
[12]
Ayala, Paola, Raul Arenal, Annick Loiseau, Angel Rubio, and Thomas Pichler, The physical and chemical properties of heteronanotubes, Reviews of modern physics 82, No. 2 (2010): 1843.
DOI: 10.1103/revmodphys.82.1843
Google Scholar
[13]
Gleiman, Seth, Chun-Ku Chen, Abhaya Datye, and Jonathan Phillips, Melting and spheroidization of hexagonal boron nitride in a microwave-powered, atmospheric pressure nitrogen plasma, Journal of materials science 37 (2002): 3429-3440.
DOI: 10.1023/a:1016502804363
Google Scholar
[14]
Xie, Lu, Tianhua Wang, Chenwei He, Zhihui Sun, and Qing Peng, Molecular dynamics simulation on mechanical and piezoelectric properties of boron nitride honeycomb structures, Nanomaterials 9, No. 7 (2019): 1044.
DOI: 10.3390/nano9071044
Google Scholar
[15]
Slotman, G. J., and A. Fasolino, Structure, stability and defects of single layer h-BN in comparison to graphene, arXiv preprint arXiv:1302.5241 (2013).
Google Scholar
[16]
Nguyen, Hang TT, and Tran Thi Thu Hanh, Melting process of zigzag boron nitride nanoribbon, Physica E: Low-dimensional Systems and Nanostructures 106 (2019): 95-100.
DOI: 10.1016/j.physe.2018.10.029
Google Scholar
[17]
Plimpton, S. (1995), Fast parallel algorithms for short-range molecular dynamics, Journal of computational physics, 117(1), 1-19.
DOI: 10.1006/jcph.1995.1039
Google Scholar
[18]
Tersoff, J. J. P. R. B, Modeling solid-state chemistry: Interatomic potentials for multicomponent systems, Physical review B 39, No. 8 (1989): 5566.
DOI: 10.1103/physrevb.39.5566
Google Scholar
[19]
Slotman, G. J., and A. Fasolino, Structure, stability and defects of single layer hexagonal BN in comparison to graphene, Journal of Physics: Condensed Matter 25, No. 4 (2012): 045009.
DOI: 10.1088/0953-8984/25/4/045009
Google Scholar
[20]
Le Roux, Sébastien, and Valeri Petkov, ISAACS–interactive structure analysis of amorphous and crystalline systems, Journal of Applied Crystallography 43, No. 1 (2010): 181-185.
DOI: 10.1107/s0021889809051929
Google Scholar
[21]
Humphrey, William, Andrew Dalke, and Klaus Schulten, VMD: visual molecular dynamics, Journal of molecular graphics 14, No. 1 (1996): 33-38.
DOI: 10.1016/0263-7855(96)00018-5
Google Scholar
[22]
Lee, Hsiao-Fang, Keivan Esfarjani, Zhizhong Dong, Gang Xiong, Assimina A. Pelegri, and Stephen D. Tse, Molecular dynamics study of cubic boron nitride nanoparticles: decomposition with phase segregation during melting, ACS nano 10, No. 11 (2016): 10563-10572.
DOI: 10.1021/acsnano.6b06583
Google Scholar
[23]
Lumsdon, Caroline, Molecular dynamics studies of static and dynamic melting points, using numerical modelling and simulated tampers, PhD diss., University of York, 2021.
Google Scholar
[24]
Chakravarty, Charusita, Pablo G. Debenedetti, and Frank H. Stillinger, Lindemann measures for the solid-liquid phase transition, The Journal of chemical physics 126, No. 20 (2007): 204508.
DOI: 10.1063/1.2737054
Google Scholar
[25]
Gupta, Siddharth, Ritesh Sachan, and Jagdish Narayan, Nanometer-Thick Hexagonal Boron Nitride Films for 2D Field-Effect Transistors, ACS Applied Nano Materials 3, No. 8 (2020): 7930-7941.
DOI: 10.1021/acsanm.0c01416
Google Scholar