Melting Process of the Two-Dimensional Material BN: Insights from Molecular Dynamics Simulations

Article Preview

Abstract:

The structure of the two-dimensional BN containing 9941 atoms has been studied by classical molecular dynamics simulation with Tersoff potential. The periodic boundary condition is applied to the two x and y directions, while the z direction is free. The analysis results of the function of total energy per atom and heat capacity, mean squared displacement, diffusion coefficient, radial distribution function, distribution of coordination number, angle distribution, and ring statistics show that the melting point of the material is about 4600 K. This value is higher than the experimental value as well as the previous simulation results. The observations also show that the melting process begins at the corners and edges and then spreads across the face of the model. The breakage of the B-N bond leads to the formation of clusters of N2 molecules and B with different sizes.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1099)

Pages:

163-172

Citation:

Online since:

October 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Novoselov, Kostya S., Daria V. Andreeva, Wencai Ren, and Guangcun Shan, Graphene and other two-dimensional materials, Frontiers of Physics 14 (2019): 1-4.

DOI: 10.1007/s11467-018-0835-6

Google Scholar

[2] Chang, Cheng, Wei Chen, Ye Chen, Yonghua Chen, Yu Chen, Feng Ding, Chunhai Fan et al, Recent progress on two-dimensional materials, Acta Phys.-Chim. Sin 37, No. 12 (2021): 2108017.

Google Scholar

[3] Geim, Andre K., and Konstantin S. Novoselov, The rise of graphene, Nature materials 6, No. 3 (2007): 183-191.

Google Scholar

[4] Zhang, Hua, Ultrathin two-dimensional nanomaterials, ACS nano 9, No. 10 (2015): 9451-9469.

DOI: 10.1021/acsnano.5b05040

Google Scholar

[5] Bhimanapati, Ganesh R., Zhong Lin, Vincent Meunier, Yeonwoong Jung, Judy Cha, Saptarshi Das, Di Xiao et al, Recent advances in two-dimensional materials beyond graphene, ACS nano 9, No. 12 (2015): 11509-11539.

DOI: 10.1021/acsnano.5b05556

Google Scholar

[6] Golberg, Dmitri, Yoshio Bando, Yang Huang, Takeshi Terao, Masanori Mitome, Chengchun Tang, and Chunyi Zhi, Boron nitride nanotubes and nanosheets, ACS nano 4, No. 6 (2010): 2979-2993.

DOI: 10.1021/nn1006495

Google Scholar

[7] Pakdel, Amir, Yoshio Bando, and Dmitri Golberg, Nano boron nitride flatland, Chemical Society Reviews 43, No. 3 (2014): 934-959.

DOI: 10.1039/c3cs60260e

Google Scholar

[8] Kubota, Yoichi, Kenji Watanabe, Osamu Tsuda, and Takashi Taniguchi, Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure, Science 317, No. 5840 (2007): 932-934.

DOI: 10.1126/science.1144216

Google Scholar

[9] Wu, Menghao, Xiaojun Wu, Yong Pei, Yong Wang, and Xiao Cheng Zeng, Three dimensional network model of carbon containing only sp 2-carbon bonds and boron nitride analogues, Chemical communications 47, No. 15 (2011): 4406-4408.

DOI: 10.1039/c0cc05738j

Google Scholar

[10] Arenal, Raul, Xavier Blase, and Annick Loiseau, Boron-nitride and boron-carbonitride nanotubes: synthesis, characterization and theory, Advances in Physics 59, No. 2 (2010): 101-179.

DOI: 10.1080/00018730903562033

Google Scholar

[11] Golberg, Dmitri, Yoshio Bando, C. C. Tang, and C. Y. Zhi, Boron nitride nanotubes, Advanced Materials 19, No. 18 (2007): 2413-2432.

DOI: 10.1002/adma.200700179

Google Scholar

[12] Ayala, Paola, Raul Arenal, Annick Loiseau, Angel Rubio, and Thomas Pichler, The physical and chemical properties of heteronanotubes, Reviews of modern physics 82, No. 2 (2010): 1843.

DOI: 10.1103/revmodphys.82.1843

Google Scholar

[13] Gleiman, Seth, Chun-Ku Chen, Abhaya Datye, and Jonathan Phillips, Melting and spheroidization of hexagonal boron nitride in a microwave-powered, atmospheric pressure nitrogen plasma, Journal of materials science 37 (2002): 3429-3440.

DOI: 10.1023/a:1016502804363

Google Scholar

[14] Xie, Lu, Tianhua Wang, Chenwei He, Zhihui Sun, and Qing Peng, Molecular dynamics simulation on mechanical and piezoelectric properties of boron nitride honeycomb structures, Nanomaterials 9, No. 7 (2019): 1044.

DOI: 10.3390/nano9071044

Google Scholar

[15] Slotman, G. J., and A. Fasolino, Structure, stability and defects of single layer h-BN in comparison to graphene, arXiv preprint arXiv:1302.5241 (2013).

Google Scholar

[16] Nguyen, Hang TT, and Tran Thi Thu Hanh, Melting process of zigzag boron nitride nanoribbon, Physica E: Low-dimensional Systems and Nanostructures 106 (2019): 95-100.

DOI: 10.1016/j.physe.2018.10.029

Google Scholar

[17] Plimpton, S. (1995), Fast parallel algorithms for short-range molecular dynamics, Journal of computational physics, 117(1), 1-19.

DOI: 10.1006/jcph.1995.1039

Google Scholar

[18] Tersoff, J. J. P. R. B, Modeling solid-state chemistry: Interatomic potentials for multicomponent systems, Physical review B 39, No. 8 (1989): 5566.

DOI: 10.1103/physrevb.39.5566

Google Scholar

[19] Slotman, G. J., and A. Fasolino, Structure, stability and defects of single layer hexagonal BN in comparison to graphene, Journal of Physics: Condensed Matter 25, No. 4 (2012): 045009.

DOI: 10.1088/0953-8984/25/4/045009

Google Scholar

[20] Le Roux, Sébastien, and Valeri Petkov, ISAACS–interactive structure analysis of amorphous and crystalline systems, Journal of Applied Crystallography 43, No. 1 (2010): 181-185.

DOI: 10.1107/s0021889809051929

Google Scholar

[21] Humphrey, William, Andrew Dalke, and Klaus Schulten, VMD: visual molecular dynamics, Journal of molecular graphics 14, No. 1 (1996): 33-38.

DOI: 10.1016/0263-7855(96)00018-5

Google Scholar

[22] Lee, Hsiao-Fang, Keivan Esfarjani, Zhizhong Dong, Gang Xiong, Assimina A. Pelegri, and Stephen D. Tse, Molecular dynamics study of cubic boron nitride nanoparticles: decomposition with phase segregation during melting, ACS nano 10, No. 11 (2016): 10563-10572.

DOI: 10.1021/acsnano.6b06583

Google Scholar

[23] Lumsdon, Caroline, Molecular dynamics studies of static and dynamic melting points, using numerical modelling and simulated tampers, PhD diss., University of York, 2021.

Google Scholar

[24] Chakravarty, Charusita, Pablo G. Debenedetti, and Frank H. Stillinger, Lindemann measures for the solid-liquid phase transition, The Journal of chemical physics 126, No. 20 (2007): 204508.

DOI: 10.1063/1.2737054

Google Scholar

[25] Gupta, Siddharth, Ritesh Sachan, and Jagdish Narayan, Nanometer-Thick Hexagonal Boron Nitride Films for 2D Field-Effect Transistors, ACS Applied Nano Materials 3, No. 8 (2020): 7930-7941.

DOI: 10.1021/acsanm.0c01416

Google Scholar